ON THE FAILURE OF GORENSTEINESS FOR THE
 SEQUENCE $(1,125,95,77,70,77,95,125,1)$

Jeaman Ahn*

Abstract

In [9], the authors determine an infinite class of nonunimodal Gorenstein sequence, which includes the example $$
\bar{h}_{1}=(1,125,95,77,71,77,95,125,1) .
$$

They raise a question whether there is a Gorenstein algebra with Hilbert function $$
\bar{h}_{2}=(1,125,95,77,70,77,95,125,1),
$$ which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function \bar{h}_{2}.

1. Introduction

Throughout this paper, k will denote an infinite field, and $R=$ $k\left[x_{1}, \ldots, x_{r}\right]$ a graded polynomial ring in r variables. Let $A=R / I$ be an Artinian graded Gorenstein algebra of socle degree e. The Hilbert function of A is a finite symmetric sequence $\bar{h}=\left(1, r, h_{2}, h_{3}, \cdots, h_{e}\right)$ and we call it h-vector of A. A Gorenstein h-vector is called unimodal up to the degree $i+1$ if $1 \leq h_{1} \leq \cdots \leq h_{i} \leq h_{i+1}$. A Gorenstein h-vector is called unimodal if it is unimodal up to the degree [$\left[\frac{e}{2}\right]$.

One of important questions is to find the possible Hilbert function of Gorenstein algebra. The complete answer to this question is known for the case $r \leq 3$ (see [8, 11, 12]). In this case, the h-vector of Gorenstein sequence is unimodal.

Another important related question is to investigate the unimodality of the Gorenstein h-vector. In codimension ≥ 5, not all Gorenstein Hilbert functions are unimodal ($[1,3,5,11]$). It is not known whether

[^0]all Gorenstein algebras of codimension 4 are unimodal. In this context, one may ask if a given non-unimodal sequence is Gorenstein or if there is a good lower bounds for the growth of an Artinian Gorenstein Hilbert function in the first half. In [9], using the classical results of Macaulay, Green and Stanley about binomial expansions and h-vectors, the authors prove a very important lower bound for h_{i+1}, for any integer $1 \leq i \leq$ $\frac{e}{2}-1$.

Theorem 1.1. [9, Theorem 2.4] Suppose that $\bar{h}=\left(1, h_{1}=r, h_{2}, \ldots\right.$, $\left.h_{e-2}, h_{e-1}, h_{e}\right)$ is the h-vector of an Artinian Gorenstein algebra over $R=k\left[x_{1}, \ldots, x_{r}\right]$. Assume that i is an integer satisfying $1 \leq i \leq \frac{e}{2}-1$. Then,

$$
h_{i+1} \geq\left(\left(h_{i}\right)_{(e-i)}\right)_{-1}^{-1}+\left(\left(h_{i}\right)_{(e-i)}\right)_{-(e-2 i-1)}^{-(e-2 i)}
$$

Using this theorem the authors give a very beautiful short proof to the theorem of Stanley that all Gorenstein h-vectors of codimension $r \leq 3$ are unimodal. Also this result is used to show that all Gorenstein h-vectors of codimension 4 and socle degree $e>\frac{1}{6}\left(i^{2}+12 i+2\right)$ are unimodal up to degree $i+1$.

The bound in Theorem 1.1 is often sharp, but one would not expect it to be sharp "too often", since a sharp bound would probably make it easy to decide if non-unimodal Gorenstein Hilbert functions exist. In [9], the authors construct a particular family of Gorenstein algebras with trivial extensions, including the Gorenstein sequence

$$
(1,125,95,77,71,77,95,125,1)
$$

and raise a question whether there is a Gorenstein algebra with Hilbert function

$$
\bar{h}_{2}=(1,125,95,77,70,77,95,125,1)
$$

which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function \bar{h}_{2}.

2. Gorenstein Hilbert functions

Recall that if n and i are positive integers, then n can be written uniquely in the form

$$
n_{(i)}=\binom{n_{i}}{i}+\binom{n_{i-1}}{i-1}+\cdots+\binom{n_{j}}{j}
$$

where $n_{i}>n_{i-1}>\cdots>n_{j} \geq j \geq 1$ (see Lemma 4.2.6, [4]).

Following [2], we define, for any integers a and b,

$$
\left(n_{(i)}\right)_{b}^{a}=\binom{n_{i}+a}{i+b}+\binom{n_{i-1}+a}{i-1+b}+\cdots+\binom{n_{j}+a}{j+b}
$$

where $\binom{m}{n}=0$ for either $m<n$ or $n<0$.
Theorem 2.1 ([6], Chapter 5 in [7]). Let L be a general linear form in R and we denote by h_{d} the degree d entry of the Hilbert function of R / I and ℓ_{d} the degree d entry of the Hilbert function of $R /(I, L)$. Then, we have the following inequalities.
(a) Macaulay's Theorem: $h_{d+1} \leq\left(\left(h_{d}\right)_{(d)}\right)_{1}^{1}$.
(b) Green's Hyperplane Restriction Theorem: $\ell_{d} \leq\left(\left(h_{d}\right)_{(d)}\right)^{-1}{ }_{0}$.

Lemma 2.2 ([11]). Let $A=R / I$ be an Artinian Gorenstein algebra, and let $L \notin I$ be a linear form of R. Then the h-vector of A can be written as

$$
h:=\left(h_{0}, h_{1}, \ldots, h_{s}\right)=\left(1, b_{1}+\ell_{1}, \ldots, b_{s-1}+\ell_{s-1}, b_{s}=1\right)
$$

where $b=\left(b_{1}=1, b_{2}, \ldots, b_{s-1}, b_{s}=1\right)$ is the h-vector of $R /(I: L)$ (with the indices shifted by 1), which is a Gorenstein algebra, and

$$
\ell=\left(\ell_{0}, \ell_{1}, \ldots, \ell_{s-1}\right) \quad \text { with } \quad \ell_{0}=1
$$

is the h-vector of $R /(I, L)$.
Let S be an Artinian graded k-algebra with socle degree e. Then $E=\operatorname{Hom}(S . k)$ is the injective envelope of k, regarded as the residue class field of $S . E$ has the structure of S-module in the usual way, $(x \phi)(y)=\phi(x y)$, where $x \in S$ and $\phi \in E$. Let $R=S \times E$, endowed with component wise addition and the multiplication $(x, \phi) \cdot(y, \psi)=$ $(x y, x \psi+y \phi)$. With these notations, we have

Lemma 2.3 (Trivial Extension). A graded algebra R is a 0 -dimensional Gorenstein k-algebra. Moreover, its Hilbert function satisfies

$$
H(R, d)=H(S, d)+H(S, e+1-d), \quad(0 \leq d \leq e+1)
$$

This is a way to construct Gorenstein algebra and we call R trivial extension algebra induced by S.

The set of all Artinian Gorenstein algebras of codimension $\leq r$ and socle degree e arises, via Macaulay's inverse systems (or divided powers in characteristic p), by looking at the annihilators of forms $F \in R_{e}$. So the set of all such algebras is parametrized by the projective space $\mathbb{P}\left(R_{e}\right)$. Macaulay's inverse system is another way of constructing Gorenstein
algebras. Using it, we have the following result. [13, Proposition 8] Suppose that $\left(1, h_{1}, h_{2}, \ldots, h_{e-1}, 1\right)$ is a Gorenstein h-vector. Then also

$$
\left(1, h_{1}+1, h_{2}+1, \ldots, h_{e-1}+1,1\right)
$$

is always a Gorenstein h-vector.
3. The sequence $(1,125,95,77,70,77,95,125,1)$ is not a Gorenstein sequence.

In [9], Migliore-Nagel-Zanello constructed a Gorenstein sequence

$$
(1,125,95,77,71,77,95,125,1)
$$

Indeed, let $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{8}$ and $E=\operatorname{Hom}_{k}(S, k)$. Note that S has the Hilbert function

$$
\begin{array}{c|ccccccccc}
d & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline H(S, d) & 1 & 4 & 10 & 20 & 35 & 56 & 84 & 120 & 0
\end{array}
$$

Then E has the structure of an S-module in the usual way, i.e.,

$$
(f \varphi) g=\varphi(f g)
$$

where $\varphi \in E$ and $f, g \in R$. Let $T=R \times E$, endowed with componentwise addition and the multiplication

$$
(x, \varphi) \cdot(y, \psi)=(x y, x \psi+y \varphi)
$$

Then T is a 0 -dimensional Gorenstein k-algebra (see [11, Example 4.3]) with Hilbert function $H(T, d)=H(S, d)+H(S, 8-d)$ and thus, we have

$$
\begin{array}{c|ccccccccc}
d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \tag{3.1}\\
\hline H(T, d) & 1 & 124 & 94 & 76 & 70 & 76 & 94 & 124 & 1
\end{array}
$$

Since there is a Gorenstein algebra with Hilbert function (3.1), it follows from [13, Proposition 8], the following h-vector

$$
(1,125,95,77,71,77,95,125,1)
$$

is a Gorenstein sequence. Note that this sequence satisfies the equality in Theorem 1.1 in each degree $d \leq 3$. For the case $d=4$, we have

$$
h_{4}=71>\left(\left(h_{3}\right)_{(5)}\right)_{-1}^{-1}+\left(\left(h_{3}\right)_{(5)}\right)_{-1}^{-(2)}=70
$$

In [9], the authors raise a question whether there is a Gorenstein algebra with Hilbert function

$$
\bar{h}=(1,125,95,77,70,77,95,125,1)
$$

which has remained an open question. Our main result shows that there is no Gorenstein algebra with Hilbert function \bar{h}.

Theorem 3.1. $\bar{h}=(1,125,95,77,70,77,95,125,1)$ is not a Gorenstein sequence.

Proof. Suppose that $\bar{h}=(1,125,95,77,70,77,95,125,1)$ is a Gorenstein sequence. Then there is an Artinian Gorenstein algebra $A=R / I$ with the Hilbert function \bar{h}. and let $L \notin I$ be a linear form of R. Then the h-vector of A can be written as

$$
\bar{h}=\left(h_{0}, h_{1}, \ldots, h_{s}\right)=\left(1, b_{1}+\ell_{1}, \ldots, b_{s-1}+\ell_{s-1}, b_{s}=1\right)
$$

where $\bar{b}=\left(b_{1}=1, b_{2}, \ldots, b_{s-1}, b_{s}=1\right)$ is the h-vector of $R /(I: L)$ (with the indices shifted by 1), which is a Gorenstein algebra, and

$$
\bar{\ell}=\left(\ell_{0}, \ell_{1}, \ell_{2} \cdots, \ell_{s-1}\right) \quad \text { with } \ell_{0}=1, \ell_{1}=124
$$

is the h-vector of $R /(I, L)$. So we have the following table:

d	0	1	2	3	4	5	6	7	8
h_{d}	1	125	95	77	70	77	95	125	1
ℓ_{d}	1	124	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	0
b_{d}	0	1	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	b_{7}	1

Note that Green's Restriction Theorem implies $\ell_{i} \leq\left(h_{i}\right)_{0}^{-1}$ for each $i \geq 0$. From the following table

d	0	1	2	3	4	5	6	7	8
h_{d}	1	125	95	77	70	77	95	125	1
$\left(h_{d}\right)_{0}^{-1}$	1	124	81	50	35	27	30	36	0

we have $\left(1, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}, \ell_{6}, \ell_{7}, \ell_{8}\right)<_{\text {Lex }}(1,124,81,50,35,27,30,36)$.
Now let $\ell_{5}=27-i$ for some $i \geq 0$ and $b_{5}=h_{5}-\ell_{5}=50+i$. Since \bar{b} is a Gorenstein sequence, \bar{b} should be symmetric. So we have $b_{4}=b_{5}=50+i$ and thus $\ell_{4}=h_{4}-b_{4}=20-i$.

For such i with $0 \leq i \leq 19$, consider the following table:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\cdots	\cdots																
$\ell_{4}=20-i$	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
$\left(\ell_{4}\right)_{+1}^{+1}$	27	26	24	23	22	21	18	16	15	13	12	11	9	8	7	6	4
$\ell_{5}=27-i$	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11

By Macaulay's Theorem, we see that the following inequality has to be satisfied,

$$
\ell_{5} \leq\left(\ell_{4}\right)_{+1}^{+1}
$$

and it happens if and only if $i=0,1$. So we have $\ell_{4}=19$ or 20 .

On the other hand, if $\ell_{6}=30-j$ then $b_{3}=b_{6}=h_{6}-\ell_{6}=65+j$ and thus $\ell_{3}=h_{3}-b_{3}=12-j \leq 12$. Since the numerical function $(-)_{+1}^{+1}$ is a strictly increasing function, we have

$$
19 \leq \ell_{4} \leq\left(\ell_{3}\right)_{+1}^{+1} \leq\left(12_{(3)}\right)_{+1}^{+1}=17,
$$

which is impossible. Therefore, we conclude that the sequence

$$
(1,125,95,77,70,77,95,125,1)
$$

is not a Gorenstein sequence.

References

[1] D. Bernstein and A. Iarrobino, A non-unimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323-2336.
[2] A. M. Bigatti and A. V. Geramita, Level Algebras, Lex Segments and Minimal Hilbert Functions, Comm. Algebra 31 (2003), 1427-1451.
[3] M. Boij, Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys, Comm. Algebra 23 (1995), no. 1, 97-103.
[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge studies in advanced Mathematics, 39, Revised edition (1998), Cambridge, U.K.
[5] M. Boij and D. Laksov, Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1083-1092.
[6] M. Green. Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann. In Algebraic curves and projective geometry (Trento, 1988), volume 1389 of Lecture Notes in Math., pages 76-86. Springer, Berlin, 1989.
[7] M. Kreuzer and L. Robbiano. Computational commutative algebra. 2. SpringerVerlag, Berlin, 2005.
[8] F. S. Macaulay, The algebraic theory of modular systems, Revised reprint of the 1916 original. With an introduction by Paul Roberts. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994.
[9] J. Migliore, U. Nagel, and F. Zanello, Bounds and asymptotic minimal growth for Gorenstein Hilbert functions, J. Algebra 321 (2009), no. 5, 1510-1521.
[10] J. Migliore, U. Nagel, and F. Zanello, On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762.
[11] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83.
[12] F. Zanello, Stanley's theorem on codimension 3 Gorenstein h-vectors, Proc. Amer. Math. Soc. 134 (2006), no. 1, 5-8 (electronic)
[13] J. Migliore(1-NDM), U. Nagel(1-KY), and F. Zanello(1-NDM), On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley. (English summary) Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762.

Department of Mathematics Education Kongju National University
Kongju 314-701, Republic of Korea
E-mail: jeamanahn@kongju.ac.kr

[^0]: Received May 04, 2015; Accepted October 26, 2015.
 2010 Mathematics Subject Classification: Primary 13D40 ; Secondary 13H10.
 Key words and phrases: Gorenstein algebra, Hilbert function, Unimodality, binomial expansion.

 This research was supported by a grant from Kongju National University in 2015 (2015-0584-01).

