JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 4, November 2015 http://dx.doi.org/10.14403/jcms.2015.28.4.537

ON THE FAILURE OF GORENSTEINESS FOR THE SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)

Jeaman Ahn^*

ABSTRACT. In [9], the authors determine an infinite class of nonunimodal Gorenstein sequence, which includes the example

 $\bar{h}_1 = (1, 125, 95, 77, 71, 77, 95, 125, 1).$

They raise a question whether there is a Gorenstein algebra with Hilbert function

 $\bar{h}_2 = (1, 125, 95, 77, 70, 77, 95, 125, 1),$

which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function \bar{h}_2 .

1. Introduction

Throughout this paper, k will denote an infinite field, and $R = k[x_1, ..., x_r]$ a graded polynomial ring in r variables. Let A = R/I be an Artinian graded Gorenstein algebra of socle degree e. The Hilbert function of A is a finite symmetric sequence $\bar{h} = (1, r, h_2, h_3, \dots, h_e)$ and we call it h-vector of A. A Gorenstein h-vector is called unimodal up to the degree i + 1 if $1 \le h_1 \le \dots \le h_i \le h_{i+1}$. A Gorenstein h-vector is called unimodal if it is unimodal up to the degree $\left[\frac{e}{2}\right]$.

One of important questions is to find the possible Hilbert function of Gorenstein algebra. The complete answer to this question is known for the case $r \leq 3$ (see [8, 11, 12]). In this case, the *h*-vector of Gorenstein sequence is unimodal.

Another important related question is to investigate the unimodality of the Gorenstein *h*-vector. In codimension ≥ 5 , not all Gorenstein Hilbert functions are unimodal ([1, 3, 5, 11]). It is not known whether

Received May 04, 2015; Accepted October 26, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 13D40 ; Secondary 13H10.

Key words and phrases: Gorenstein algebra, Hilbert function, Unimodality, binomial expansion.

This research was supported by a grant from Kongju National University in 2015 (2015-0584-01).

Jeaman Ahn

all Gorenstein algebras of codimension 4 are unimodal. In this context, one may ask if a given non-unimodal sequence is Gorenstein or if there is a good lower bounds for the growth of an Artinian Gorenstein Hilbert function in the first half. In [9], using the classical results of Macaulay, Green and Stanley about binomial expansions and *h*-vectors, the authors prove a very important lower bound for h_{i+1} , for any integer $1 \le i \le \frac{e}{2} - 1$.

THEOREM 1.1. [9, Theorem 2.4] Suppose that $\bar{h} = (1, h_1 = r, h_2, \ldots, h_{e-2}, h_{e-1}, h_e)$ is the h-vector of an Artinian Gorenstein algebra over $R = k[x_1, \ldots, x_r]$. Assume that *i* is an integer satisfying $1 \le i \le \frac{e}{2} - 1$. Then,

$$h_{i+1} \ge \left((h_i)_{(e-i)} \right)_{-1}^{-1} + \left((h_i)_{(e-i)} \right)_{-(e-2i-1)}^{-(e-2i)}.$$

Using this theorem the authors give a very beautiful short proof to the theorem of Stanley that all Gorenstein *h*-vectors of codimension $r \leq 3$ are unimodal. Also this result is used to show that all Gorenstein *h*-vectors of codimension 4 and socle degree $e > \frac{1}{6}(i^2 + 12i + 2)$ are unimodal up to degree i + 1.

The bound in Theorem 1.1 is often sharp, but one would not expect it to be sharp "too often", since a sharp bound would probably make it easy to decide if non-unimodal Gorenstein Hilbert functions exist. In [9], the authors construct a particular family of Gorenstein algebras with trivial extensions, including the Gorenstein sequence

and raise a question whether there is a Gorenstein algebra with Hilbert function

$$\bar{h}_2 = (1, 125, 95, 77, 70, 77, 95, 125, 1)$$

which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function \bar{h}_2 .

2. Gorenstein Hilbert functions

Recall that if n and i are positive integers, then n can be written uniquely in the form

$$n_{(i)} = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j},$$

where $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$ (see Lemma 4.2.6, [4]).

Following [2], we define, for any integers a and b,

$$(n_{(i)})_b^a = \binom{n_i + a}{i + b} + \binom{n_{i-1} + a}{i - 1 + b} + \dots + \binom{n_j + a}{j + b}$$

where $\binom{m}{n} = 0$ for either m < n or n < 0.

THEOREM 2.1 ([6], Chapter 5 in [7]). Let L be a general linear form in R and we denote by h_d the degree d entry of the Hilbert function of R/I and ℓ_d the degree d entry of the Hilbert function of R/(I, L). Then, we have the following inequalities.

- (a) Macaulay's Theorem: $h_{d+1} \leq ((h_d)_{(d)})_1^1$.
- (b) Green's Hyperplane Restriction Theorem: $\ell_d \leq \left((h_d)_{(d)} \right)_0^{-1}$.

LEMMA 2.2 ([11]). Let A = R/I be an Artinian Gorenstein algebra, and let $L \notin I$ be a linear form of R. Then the *h*-vector of A can be written as

$$h := (h_0, h_1, \dots, h_s) = (1, b_1 + \ell_1, \dots, b_{s-1} + \ell_{s-1}, b_s = 1)$$

where $b = (b_1 = 1, b_2, \dots, b_{s-1}, b_s = 1)$ is the *h*-vector of R/(I : L) (with the indices shifted by 1), which is a Gorenstein algebra, and

$$\ell = (\ell_0, \ell_1, \dots, \ell_{s-1})$$
 with $\ell_0 = 1$

is the *h*-vector of R/(I, L).

Let S be an Artinian graded k-algebra with socle degree e. Then E = Hom(S.k) is the injective envelope of k, regarded as the residue class field of S. E has the structure of S-module in the usual way, $(x\phi)(y) = \phi(xy)$, where $x \in S$ and $\phi \in E$. Let $R = S \times E$, endowed with component wise addition and the multiplication $(x, \phi) \cdot (y, \psi) = (xy, x\psi + y\phi)$. With these notations, we have

LEMMA 2.3 (Trivial Extension). A graded algebra R is a 0-dimensional Gorenstein k-algebra. Moreover, its Hilbert function satisfies

 $H(R,d) = H(S,d) + H(S,e+1-d), \quad (0 \le d \le e+1).$

This is a way to construct Gorenstein algebra and we call R trivial extension algebra induced by S.

The set of all Artinian Gorenstein algebras of codimension $\leq r$ and socle degree *e* arises, via Macaulay's inverse systems (or divided powers in characteristic *p*), by looking at the annihilators of forms $F \in R_e$. So the set of all such algebras is parametrized by the projective space $\mathbb{P}(R_e)$. Macaulay's inverse system is another way of constructing Gorenstein

Jeaman Ahn

algebras. Using it, we have the following result. [13, Proposition 8] Suppose that $(1, h_1, h_2, \ldots, h_{e-1}, 1)$ is a Gorenstein *h*-vector. Then also

$$(1, h_1 + 1, h_2 + 1, \dots, h_{e-1} + 1, 1)$$

is always a Gorenstein h-vector.

3. The sequence (1, 125, 95, 77, 70, 77, 95, 125, 1) is not a Gorenstein sequence.

In [9], Migliore-Nagel-Zanello constructed a Gorenstein sequence

Indeed, let $S = k[x_1, x_2, x_3, x_4]/(x_1, x_2, x_3, x_4)^8$ and $E = \text{Hom}_k(S, k)$. Note that S has the Hilbert function

Then E has the structure of an S-module in the usual way, i.e.,

$$(f\varphi)g = \varphi(fg),$$

where $\varphi \in E$ and $f, g \in R$. Let $T = R \times E$, endowed with componentwise addition and the multiplication

$$(x, \varphi) \cdot (y, \psi) = (xy, x\psi + y\varphi).$$

Then T is a 0-dimensional Gorenstein k-algebra (see [11, Example 4.3]) with Hilbert function H(T, d) = H(S, d) + H(S, 8 - d) and thus, we have

$$(3.1) \qquad \frac{d}{H(T,d)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 1 & 124 & 94 & 76 & 70 & 76 & 94 & 124 & 1 \end{vmatrix}$$

Since there is a Gorenstein algebra with Hilbert function (3.1), it follows from [13, Proposition 8], the following *h*-vector

is a Gorenstein sequence. Note that this sequence satisfies the equality in Theorem 1.1 in each degree $d \leq 3$. For the case d = 4, we have

$$h_4 = 71 > ((h_3)_{(5)})_{-1}^{-1} + ((h_3)_{(5)})_{-1}^{-(2)} = 70.$$

In [9], the authors raise a question whether there is a Gorenstein algebra with Hilbert function

$$\bar{h} = (1, 125, 95, 77, 70, 77, 95, 125, 1),$$

which has remained an open question. Our main result shows that there is no Gorenstein algebra with Hilbert function \bar{h} .

THEOREM 3.1. $\bar{h} = (1, 125, 95, 77, 70, 77, 95, 125, 1)$ is not a Gorenstein sequence.

Proof. Suppose that $\bar{h} = (1, 125, 95, 77, 70, 77, 95, 125, 1)$ is a Gorenstein sequence. Then there is an Artinian Gorenstein algebra A = R/I with the Hilbert function \bar{h} . and let $L \notin I$ be a linear form of R. Then the *h*-vector of A can be written as

$$h = (h_0, h_1, \dots, h_s) = (1, b_1 + \ell_1, \dots, b_{s-1} + \ell_{s-1}, b_s = 1)$$

where $\bar{b} = (b_1 = 1, b_2, \dots, b_{s-1}, b_s = 1)$ is the *h*-vector of R/(I : L) (with the indices shifted by 1), which is a Gorenstein algebra, and

$$\ell = (\ell_0, \ell_1, \ell_2 \cdots, \ell_{s-1})$$
 with $\ell_0 = 1, \ell_1 = 124$

is the *h*-vector of R/(I, L). So we have the following table:

d	0	1	2	3	4	5	6	7	8
h_d	1	125	95	77	70	77	95	125	1
ℓ_d	1	124	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	0
b_d	0	1	b_2	b_3	b_4	b_5	b_6	$\ell_7 \\ b_7$	1

Note that Green's Restriction Theorem implies $\ell_i \leq (h_i)_0^{-1}$ for each $i \geq 0$. From the following table

d									
h_d	1	125	95	77	70	77	95	125	1
$(h_d)_0^{-1}$	1	124	81	50	35	27	30	36	0

we have $(1, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6, \ell_7, \ell_8) <_{\text{Lex}} (1, 124, 81, 50, 35, 27, 30, 36)$.

Now let $\ell_5 = 27 - i$ for some $i \ge 0$ and $b_5 = h_5 - \ell_5 = 50 + i$. Since \bar{b} is a Gorenstein sequence, \bar{b} should be symmetric. So we have $b_4 = b_5 = 50 + i$ and thus $\ell_4 = h_4 - b_4 = 20 - i$.

For such *i* with $0 \le i \le 19$, consider the following table:

i																		
$\ell_4 = 20 - i$	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	
$(\ell_4)^{+1}_{+1}$ $\ell_5 = 27 - i$	27	26	24	23	22	21	18	16	15	13	12	11	9	8	7	6	4	
$\ell_5 = 2\dot{7} - i$	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	• • •

By Macaulay's Theorem, we see that the following inequality has to be satisfied,

$$\ell_5 \le (\ell_4)_{+1}^{+1}$$

and it happens if and only if i = 0, 1. So we have $\ell_4 = 19$ or 20.

Jeaman Ahn

On the other hand, if $\ell_6 = 30 - j$ then $b_3 = b_6 = h_6 - \ell_6 = 65 + j$ and thus $\ell_3 = h_3 - b_3 = 12 - j \le 12$. Since the numerical function $(-)_{+1}^{+1}$ is a strictly increasing function, we have

$$19 \le \ell_4 \le (\ell_3)_{+1}^{+1} \le (12_{(3)})_{+1}^{+1} = 17,$$

which is impossible. Therefore, we conclude that the sequence

is not a Gorenstein sequence.

References

- D. Bernstein and A. Iarrobino, A non-unimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323-2336.
- [2] A. M. Bigatti and A. V. Geramita, Level Algebras, Lex Segments and Minimal Hilbert Functions, Comm. Algebra 31 (2003), 1427-1451.
- [3] M. Boij, Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys, Comm. Algebra 23 (1995), no. 1, 97-103.
- [4] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge studies in advanced Mathematics, **39**, Revised edition (1998), Cambridge, U.K.
- [5] M. Boij and D. Laksov, Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1083-1092.
- [6] M. Green. Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann. In Algebraic curves and projective geometry (Trento, 1988), volume 1389 of Lecture Notes in Math., pages 76-86. Springer, Berlin, 1989.
- [7] M. Kreuzer and L. Robbiano. Computational commutative algebra. 2. Springer-Verlag, Berlin, 2005.
- [8] F. S. Macaulay, *The algebraic theory of modular systems*, Revised reprint of the 1916 original. With an introduction by Paul Roberts. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994.
- [9] J. Migliore, U. Nagel, and F. Zanello, Bounds and asymptotic minimal growth for Gorenstein Hilbert functions, J. Algebra 321 (2009), no. 5, 1510-1521.
- [10] J. Migliore, U. Nagel, and F. Zanello, On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762.
- [11] R. P. Stanley, *Hilbert functions of graded algebras*, Advances in Math. 28 (1978), no. 1, 57-83.
- [12] F. Zanello, Stanley's theorem on codimension 3 Gorenstein h-vectors, Proc. Amer. Math. Soc. 134 (2006), no. 1, 5-8 (electronic)
- [13] J. Migliore(1-NDM), U. Nagel(1-KY), and F. Zanello(1-NDM), On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley. (English summary) Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762.

On the failure of Gorensteiness

Department of Mathematics Education Kongju National University Kongju 314-701, Republic of Korea *E-mail*: jeamanahn@kongju.ac.kr

*