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ON THE FAILURE OF GORENSTEINESS FOR THE

SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)

Jeaman Ahn*

Abstract. In [9], the authors determine an infinite class of non-
unimodal Gorenstein sequence, which includes the example

h̄1 = (1, 125, 95, 77, 71, 77, 95, 125, 1).

They raise a question whether there is a Gorenstein algebra with
Hilbert function

h̄2 = (1, 125, 95, 77, 70, 77, 95, 125, 1),

which has remained an open question. In this paper, we prove that
there is no Gorenstein algebra with Hilbert function h̄2.

1. Introduction

Throughout this paper, k will denote an infinite field, and R =
k[x1, ..., xr] a graded polynomial ring in r variables. Let A = R/I be
an Artinian graded Gorenstein algebra of socle degree e. The Hilbert
function of A is a finite symmetric sequence h̄ = (1, r, h2, h3, · · · , he) and
we call it h-vector of A. A Gorenstein h-vector is called unimodal up to
the degree i + 1 if 1 ≤ h1 ≤ · · · ≤ hi ≤ hi+1. A Gorenstein h-vector is
called unimodal if it is unimodal up to the degree [ e2 ].

One of important questions is to find the possible Hilbert function of
Gorenstein algebra. The complete answer to this question is known for
the case r ≤ 3 (see [8, 11, 12]). In this case, the h-vector of Gorenstein
sequence is unimodal.

Another important related question is to investigate the unimodality
of the Gorenstein h-vector. In codimension ≥ 5, not all Gorenstein
Hilbert functions are unimodal ([1, 3, 5, 11]). It is not known whether
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all Gorenstein algebras of codimension 4 are unimodal. In this context,
one may ask if a given non-unimodal sequence is Gorenstein or if there
is a good lower bounds for the growth of an Artinian Gorenstein Hilbert
function in the first half. In [9], using the classical results of Macaulay,
Green and Stanley about binomial expansions and h-vectors, the authors
prove a very important lower bound for hi+1, for any integer 1 ≤ i ≤
e
2 − 1.

Theorem 1.1. [9, Theorem 2.4] Suppose that h̄ = (1, h1 = r, h2, . . . ,
he−2, he−1, he) is the h-vector of an Artinian Gorenstein algebra over
R = k[x1, . . . , xr]. Assume that i is an integer satisfying 1 ≤ i ≤ e

2 − 1.
Then,

hi+1 ≥
(
(hi)(e−i)

)−1

−1
+
(
(hi)(e−i)

)−(e−2i)

−(e−2i−1)
.

Using this theorem the authors give a very beautiful short proof to
the theorem of Stanley that all Gorenstein h-vectors of codimension
r ≤ 3 are unimodal. Also this result is used to show that all Gorenstein
h-vectors of codimension 4 and socle degree e > 1

6(i2 + 12i + 2) are
unimodal up to degree i+ 1.

The bound in Theorem 1.1 is often sharp, but one would not expect
it to be sharp ”too often“, since a sharp bound would probably make
it easy to decide if non-unimodal Gorenstein Hilbert functions exist. In
[9], the authors construct a particular family of Gorenstein algebras with
trivial extensions, including the Gorenstein sequence

(1, 125, 95, 77, 71, 77, 95, 125, 1),

and raise a question whether there is a Gorenstein algebra with Hilbert
function

h̄2 = (1, 125, 95, 77, 70, 77, 95, 125, 1),

which has remained an open question. In this paper, we prove that there
is no Gorenstein algebra with Hilbert function h̄2.

2. Gorenstein Hilbert functions

Recall that if n and i are positive integers, then n can be written
uniquely in the form

n(i) =

(
ni
i

)
+

(
ni−1

i− 1

)
+ · · ·+

(
nj
j

)
,

where ni > ni−1 > · · · > nj ≥ j ≥ 1 (see Lemma 4.2.6, [4]).
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Following [2], we define, for any integers a and b,(
n(i)

)a
b

=

(
ni + a

i+ b

)
+

(
ni−1 + a

i− 1 + b

)
+ · · ·+

(
nj + a

j + b

)
where

(
m
n

)
= 0 for either m < n or n < 0.

Theorem 2.1 ([6], Chapter 5 in [7]). Let L be a general linear form
in R and we denote by hd the degree d entry of the Hilbert function of
R/I and `d the degree d entry of the Hilbert function of R/(I, L). Then,
we have the following inequalities.

(a) Macaulay’s Theorem: hd+1 ≤
(
(hd)(d)

)1
1
.

(b) Green’s Hyperplane Restriction Theorem: `d ≤
(
(hd)(d)

)−1

0
.

Lemma 2.2 ([11]). Let A = R/I be an Artinian Gorenstein algebra,
and let L /∈ I be a linear form of R. Then the h-vector of A can be
written as

h := (h0, h1, . . . , hs) = (1, b1 + `1, . . . , bs−1 + `s−1, bs = 1)

where b = (b1 = 1, b2, . . . , bs−1, bs = 1) is the h-vector of R/(I : L) (with
the indices shifted by 1), which is a Gorenstein algebra, and

` = (`0, `1, . . . , `s−1) with `0 = 1

is the h-vector of R/(I, L).

Let S be an Artinian graded k-algebra with socle degree e. Then
E = Hom(S.k) is the injective envelope of k, regarded as the residue
class field of S. E has the structure of S-module in the usual way,
(xφ)(y) = φ(xy), where x ∈ S and φ ∈ E. Let R = S × E, endowed
with component wise addition and the multiplication (x, φ) · (y, ψ) =
(xy, xψ + yφ). With these notations, we have

Lemma 2.3 (Trivial Extension). A graded algebraR is a 0-dimensional
Gorenstein k-algebra. Moreover, its Hilbert function satisfies

H(R, d) = H(S, d) +H(S, e+ 1− d), (0 ≤ d ≤ e+ 1).

This is a way to construct Gorenstein algebra and we call R trivial
extension algebra induced by S.

The set of all Artinian Gorenstein algebras of codimension ≤ r and
socle degree e arises, via Macaulay’s inverse systems (or divided powers
in characteristic p), by looking at the annihilators of forms F ∈ Re. So
the set of all such algebras is parametrized by the projective space P(Re).
Macaulay’s inverse system is another way of constructing Gorenstein
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algebras. Using it, we have the following result. [13, Proposition 8]
Suppose that (1, h1, h2, . . . , he−1, 1) is a Gorenstein h-vector. Then also

(1, h1 + 1, h2 + 1, . . . , he−1 + 1, 1)

is always a Gorenstein h-vector.

3. The sequence (1, 125, 95, 77, 70, 77, 95, 125, 1) is not a Goren-
stein sequence.

In [9], Migliore-Nagel-Zanello constructed a Gorenstein sequence

(1, 125, 95, 77, 71, 77, 95, 125, 1),

Indeed, let S = k[x1, x2, x3, x4]/(x1, x2, x3, x4)
8 and E = Homk(S, k).

Note that S has the Hilbert function

d 0 1 2 3 4 5 6 7 8
H(S, d) 1 4 10 20 35 56 84 120 0

Then E has the structure of an S-module in the usual way, i.e.,

(fϕ)g = ϕ(fg),

where ϕ ∈ E and f, g ∈ R. Let T = R × E, endowed with component-
wise addition and the multiplication

(x, ϕ) · (y, ψ) = (xy, xψ + yϕ).

Then T is a 0-dimensional Gorenstein k-algebra (see [11, Example 4.3])
with Hilbert function H(T, d) = H(S, d)+H(S, 8−d) and thus, we have

(3.1)
d 1 2 3 4 5 6 7 8 9

H(T, d) 1 124 94 76 70 76 94 124 1

Since there is a Gorenstein algebra with Hilbert function (3.1), it follows
from [13, Proposition 8], the following h-vector

(1, 125, 95, 77, 71, 77, 95, 125, 1)

is a Gorenstein sequence. Note that this sequence satisfies the equality
in Theorem 1.1 in each degree d ≤ 3. For the case d = 4, we have

h4 = 71 >
(
(h3)(5)

)−1

−1
+
(
(h3)(5)

)−(2)

−1
= 70.

In [9], the authors raise a question whether there is a Gorenstein
algebra with Hilbert function

h̄ = (1, 125, 95, 77, 70, 77, 95, 125, 1),
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which has remained an open question. Our main result shows that there
is no Gorenstein algebra with Hilbert function h̄.

Theorem 3.1. h̄ = (1, 125, 95, 77, 70, 77, 95, 125, 1) is not a Goren-
stein sequence.

Proof. Suppose that h̄ = (1, 125, 95, 77, 70, 77, 95, 125, 1) is a Goren-
stein sequence. Then there is an Artinian Gorenstein algebra A = R/I
with the Hilbert function h̄. and let L /∈ I be a linear form of R. Then
the h-vector of A can be written as

h̄ = (h0, h1, . . . , hs) = (1, b1 + `1, . . . , bs−1 + `s−1, bs = 1)

where b̄ = (b1 = 1, b2, . . . , bs−1, bs = 1) is the h-vector of R/(I : L) (with
the indices shifted by 1), which is a Gorenstein algebra, and

¯̀= (`0, `1, `2 · · · , `s−1) with `0 = 1, `1 = 124

is the h-vector of R/(I, L). So we have the following table:

d 0 1 2 3 4 5 6 7 8
hd 1 125 95 77 70 77 95 125 1
`d 1 124 `2 `3 `4 `5 `6 `7 0
bd 0 1 b2 b3 b4 b5 b6 b7 1

Note that Green’s Restriction Theorem implies `i ≤ (hi)
−1
0 for each

i ≥ 0. From the following table

d 0 1 2 3 4 5 6 7 8
hd 1 125 95 77 70 77 95 125 1

(hd)−1
0 1 124 81 50 35 27 30 36 0

we have (1, `1, `2, `3, `4, `5, `6, `7, `8) <Lex (1, 124, 81, 50, 35, 27, 30, 36) .
Now let `5 = 27 − i for some i ≥ 0 and b5 = h5 − `5 = 50 + i.

Since b̄ is a Gorenstein sequence, b̄ should be symmetric. So we have
b4 = b5 = 50 + i and thus `4 = h4 − b4 = 20− i.

For such i with 0 ≤ i ≤ 19, consider the following table:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
`4 = 20 − i 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 · · ·

(`4)
+1
+1 27 26 24 23 22 21 18 16 15 13 12 11 9 8 7 6 4 · · ·

`5 = 27 − i 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 · · ·

By Macaulay’s Theorem, we see that the following inequality has to be
satisfied,

`5 ≤ (`4)
+1
+1

and it happens if and only if i = 0, 1. So we have `4 = 19 or 20.
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On the other hand, if `6 = 30− j then b3 = b6 = h6− `6 = 65 + j and
thus `3 = h3 − b3 = 12− j ≤ 12. Since the numerical function (−)+1

+1 is
a strictly increasing function, we have

19 ≤ `4 ≤ (`3)
+1
+1 ≤ (12(3))

+1
+1 = 17,

which is impossible. Therefore, we conclude that the sequence

(1, 125, 95, 77, 70, 77, 95, 125, 1)

is not a Gorenstein sequence.
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