Honam Mathematical J. **41** (2019), No. 2, pp. 421–433 https://doi.org/10.5831/HMJ.2019.41.2.421

USEFUL OPERATORS ON REPRESENTATIONS OF THE RATIONAL CHEREDNIK ALGEBRA OF TYPE \mathfrak{sl}_n

GICHEOL SHIN

Abstract. Let *n* denote an integer greater than 2 and let *c* denote a nonzero complex number. In this paper, we introduce a family of elements of the rational Cherednik algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ of type \mathfrak{sl}_n , which are analogous to the Dunkl-Cherednik elements of the rational Cherednik algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ of type \mathfrak{gl}_n . We also introduce the raising and lowering element of $\mathbf{H}^{\mathfrak{sl}_n}(c)$ which are useful in the representation theory of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$, and provide simple results related to these elements.

1. Introduction

Throughout this paper, let n denote an integer greater than 2, and let c denote a nonzero complex number unless otherwise stated.

Roughly speaking, the rational Cherednik algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$ of type \mathfrak{gl}_n associated with c is the algebra generated by two polynomial subalgebras $\mathbb{C}[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]$, $\mathbb{C}[\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_n]$, and the symmetric group \mathcal{S}_n subject to certain relations. The algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$ acts on the space $\mathbb{C}[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]$ of all polynomials in n variables $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ in the following way. The element \mathbf{x}_i acts as multiplication by \mathbf{x}_i , and the element $w \in \mathcal{S}_n$ permutes the variables $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ naturally. On the other hand, the element \mathbf{y}_i acts as the Dunkl operator:

$$D_i = \frac{\partial}{\partial \mathbf{x}_i} - c \sum_{j \neq i} \frac{1}{\mathbf{x}_i - \mathbf{x}_j} (1 - s_{ij}).$$

Received November 14, 2018. Revised March 11, 2019. Accepted March 12, 2019. 2010 Mathematics Subject Classification. 16G99, 17B10, 20C08.

Key words and phrases. rational Cherednik algebra, representation theory, Dunkl-Cherednik operators.

In [3], Cherednik introduced a family of commuting elements of $\mathbf{H}^{\mathfrak{gl}_n}(c)$:

$$u_i = -\frac{1}{c} \mathbf{x}_i \mathbf{y}_i + \sum_{p=1}^{i-1} s_{pi} \quad (i \in \{1, 2, \cdots, n\}),$$

whose actions on $\mathbb{C}[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]$ are called the Dunkl-Cherednik operators. He proved that there exists a basis of the space $\mathbb{C}[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n]$ consisting of simultaneous eigenvectors for the Dunkl-Cherednik operators and each nontrivial eigenspace is one-dimensional for a generic c. The simultaneous eigenvectors are also called non-symmetric Jack polynomials. Furthermore, Cherednik completely classified all isomorphism calsses of irreducible modules which admit a basis consisting of simultaneous eigenvectors for the actions of the elements u_i in [4]. Suzuki and Vazirani recovered his classification by combinatorial means in [6].

The rational Cherednik algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ of type \mathfrak{sl}_n , which is a subalgebra of $\mathbf{H}^{\mathfrak{gl}_n}(c)$ and its representations have been studied as well. For example, when $c = \frac{r}{n}$ with $\gcd(r, n) = 1$, the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ admits a finite dimensional representation. However, these results on the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ were obtained by totally different means from Cherednik's method for the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$. Indeed, it is not possible to apply his method to the representation theory of the subalgebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ naively. The main obstacle is that the elements u_i does not belong to the subalgebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

The purpose of this paper is to introduce a family of commuting elements of $\mathbf{H}^{\mathfrak{sl}_n}(c)$ which is analogous to the Dunkl-Cherednik operators, and to provide several relations among the elements. We expect that the elements introduced in this paper allows us to show several results on the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ in a purely representation-theoretic way, which is analogous to Cherednik's method.

2. Preliminaries

In this section, we shortly review the definitions of the rational Cherednik algebras of type \mathfrak{gl}_n and \mathfrak{sl}_n . All details skipped in this section can be found in [1] or [2].

2.1. Rational Cherednik algebra of type \mathfrak{gl}_n

Recall that n denotes an integer greater than 2 and $c \in \mathbb{C} \setminus \{0\}$. The rational Cherednik algebra of type \mathfrak{gl}_n associated with c, denoted

by $\mathbf{H}^{\mathfrak{gl}_n}(c)$, is the unital associative \mathbb{C} -algebra which has the following presentation.

Remark 2.1. Many authors provide various presentations of the rational Cherednik algebra of type \mathfrak{gl}_n . We would like to inform that our presentation is compatible with the definition given in [1].

2.2. Rational Cherednik algebra of type \mathfrak{sl}_n

We may define the rational Cherednik algebra of type \mathfrak{sl}_n associated with c as a subalgebra of the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$.

Definition 2.2. The rational Cherednik algebra (abbreviated RCA) of type \mathfrak{sl}_n associated with $c \in \mathbb{C} - \{0\}$, denoted by $\mathbf{H}^{\mathfrak{sl}_n}(c)$, is the subalgebra of the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$ generated by $\mathbf{x}_1 - \mathbf{x}_n, \cdots, \mathbf{x}_{n-1} - \mathbf{x}_n$, s_1, \cdots, s_{n-1} , and $\mathbf{y}_1 - \mathbf{y}_n, \cdots, \mathbf{y}_{n-1} - \mathbf{y}_n$.

For each $i \in \{1, \dots, n-1\}$, we denote $\mathbf{x}_i - \mathbf{x}_n$ by x_i for convenience. On the other hand, we denote by y_i the element

$$y_j - \frac{1}{n}(y_1 + \dots + y_{n-1} + y_n) \quad (j \in \{1, \dots, n-1, n\}).$$

It can be directly seen that the elements y_1, \dots, y_{n-1}, y_n belong to the subalgebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ and the following equation holds:

(1)
$$y_1 + \dots + y_{n-1} + y_n = 0.$$

Let $\mathbb{C}[X_1, \dots, X_{n-1}]$ (resp. $\mathbb{C}[Y_1, \dots, Y_{n-1}]$) be the algebra of polynomials in X_1, \dots, X_{n-1} (resp. Y_1, \dots, Y_{n-1}). For $\mathbf{a} = (a_1, \dots, a_{n-1}) \in (\mathbb{N} \cup \{0\})^{n-1}$, we denote $X_1^{a_1} \cdots X_{n-1}^{a_{n-1}}$ (resp. $Y_1^{a_1} \cdots Y_{n-1}^{a_{n-1}}$) by $\mathbf{X}^{\mathbf{a}}$ (resp. $\mathbf{Y}^{\mathbf{a}}$).

We may regard the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ as a (infinite dimensional) vector space over \mathbb{C} . The following theorem, which is also known as the PBW theorem for the rational Cherednik algebra, gives a basis of the vector space $\mathbf{H}^{\mathfrak{sl}_n}(c)$ over \mathbb{C} . The proof can be found in [2].

Theorem 2.3 (PBW theorem for the rational Cherednik algebra). Let \mathcal{X} (resp. \mathcal{Y}) denote the polynomial algebra $\mathbb{C}[X_1, \dots, X_{n-1}]$ (resp. $\mathbb{C}[Y_1, \dots, Y_{n-1}]$), and let $\mathbb{C}S_n$ denote the group algebra of the symmetric group S_n . As a vector space over \mathbb{C} , the rational Cherednik algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ is isomorphic to the tensor product $\mathcal{X} \otimes \mathbb{C}S_n \otimes \mathcal{Y}$ of the vector spaces \mathcal{X} , $\mathbb{C}S_n$ and \mathcal{Y} . More precisely, the linear map

$$\mu \colon \mathcal{X} \otimes \mathbb{C}\mathcal{S}_n \otimes \mathcal{Y} \longrightarrow \mathbf{H}^{\mathfrak{sl}_n}(c)$$

given by

(2)
$$\iota(\mathbf{X}^{\mathbf{a}} \otimes w \otimes \mathbf{Y}^{\mathbf{b}}) = x_1^{a_1} \cdots x_{n-1}^{a_{n-1}} s_{i_1} s_{i_2} \cdots s_{i_k} y_1^{b_1} \cdots y_{n-1}^{b_{n-1}}$$

for $\mathbf{a} = (a_1, \dots, a_{n-1}), \mathbf{b} = (b_1, \dots, b_{n-1}) \in (\mathbb{N} \cup \{0\})^{n-1}$ and $w \in \mathcal{S}_n$, where w is represented as a product of the transpositions

(3)
$$w = (i_1 \ i_1 + 1)(i_2 \ i_2 + 1) \cdots (i_k \ i_k + 1),$$

is an isomorphism of vector spaces over \mathbb{C} .

Remark 2.4. Due to the PBW theorem, we directly see that the group algebra $\mathbb{C}S_n$ is embedded in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$. In this sense, if a permutation $w \in S_n$ can be represented as in the equation (3), we will identify w with the element $s_{i_1}s_{i_2}\cdots s_{i_k}$ in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ in the paper.

3. Useful Elements

In this section, we introduce a family of elements of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$, which are analogous to the Dunkl-Cherednik elements of the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$, introduce auxiliary elements (intertwining elements, raising element and lowering element), and prove that several relations among these elements hold. These elements are obtained from the corresponding elements of the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$ by modifying slightly.

3.1. Modified Dunkl-Cherednik elements

By modifying Dunkl-Cherednik operators slightly, we introduce a family of elements in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

Definition 3.1. For each $i \in \{1, 2, \dots, n-1\}$, we define the **modi-**fied **Dunkl-Cherednik element** g_i to be

(4)
$$g_i = -\frac{1}{c}x_iy_i + \left(\sum_{j=1}^{i-1}s_{ji}\right) + s_{in} \in \mathbf{H}^{\mathfrak{sl}_n}(c).$$

The first property of the modified Dunkl-Cherednik elements we show here is that the elements g_1, \dots, g_{n-1} with s_1, \dots, s_{n-2} in $\mathbf{H}^{\mathfrak{sl}_n}(c)$ satisfy the defining relations for the degenerate affine Hecke algebra of type \mathbf{A}_{n-2} . We prove this property in Lemma 3.2 and Proposition 3.4.

Lemma 3.2. The following relations hold in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ for all $i, j \in \{1, \dots, n-2\}$:

(5) $s_i g_i s_i = g_{i+1} - s_i,$

(6)
$$s_i g_j s_i = g_j \qquad (j \neq i, i+1).$$

Proof. Let $i \in \{1, \dots, n-2\}$. Then we have

$$s_{i}g_{i}s_{i} = s_{i}\left(-\frac{1}{c}x_{i}y_{i} + \left(\sum_{j=1}^{i-1}s_{ji}\right) + s_{in}\right)s_{i}$$
$$= -\frac{1}{c}x_{i+1}y_{i+1} + \left(\sum_{j=1}^{i-1}s_{j,i+1}\right) + s_{i+1,n}$$
$$= g_{i+1} - s_{i,i+1} = g_{i+1} - s_{i}.$$

In the case of j < i, we directly see that the equation $s_i g_j = g_j s_i$ holds because s_i commutes with $x_j, y_j, s_{1j}, \dots, s_{j-1,j}$, and s_{jn} .

Now assume $i + 1 < j \le n - 2$. Then we have

$$s_{i}g_{j}s_{i} = s_{i}\left(-\frac{1}{c}x_{j}y_{j} + s_{1j} + \dots + s_{ij} + s_{i+1,j} + \dots + s_{j-1,j} + s_{jn}\right)s_{i}$$

$$= -\frac{1}{c}x_{j}y_{j} + s_{1j} + \dots + s_{i+1,j} + s_{ij} + \dots + s_{j-1,j} + s_{jn} = g_{j}.$$

Remark 3.3. From (5), one can easily show that the following relation holds:

$$s_i g_{i+1} s_i = g_i + s_i$$

for all $i, j \in \{1, \cdots, n-2\}$.

Proposition 3.4. The modified Dunkl-Cherednik elements g_1, g_2, \dots, g_{n-1} commute with each other in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$; that is, the equation $g_i g_j = g_j g_i$ holds for every $i, j \in \{1, 2, \dots, n-1\}$.

Proof. Without loss of generality, we may assume i < j. We first show a special case directly: $g_1g_2 = g_2g_1$.

Now assume $j \geq 3.$ Then by applying Lemma 3.2 repeatedly, we have

$$g_j = s_{j-1} \cdots s_2 g_2 s_2 \cdots s_{j-1} + \sum_{k=2}^{j-1} s_{kj}.$$

Since the element g_1 commutes with the element g_2 and $s_2, \dots s_{n-1}$, we obtain $g_1g_j = g_jg_1$.

Let us assume 1 < i < j additionally. Then we also express g_i as

$$g_i = s_{i-1} \cdots s_1 g_1 s_1 \cdots s_{i-1} + \sum_{k=1}^{i-1} s_{ki},$$

from which it follows that the equation $g_i g_j = g_j g_i$ holds because the element g_j commutes with g_1 and s_1, \dots, s_i .

Let \mathcal{G} denote the subalgebra of $\mathbf{H}^{\mathfrak{sl}_n}(c)$ generated by the elements $g_1, g_2, \cdots, g_{n-1}$. Note that it follows from the previous proposition that the subalgebra \mathcal{G} is a commutative algebra.

3.2. Intertwing elements

Here we introduce auxiliary elements of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$, and give relations between these elements and the elements g_i . In Section 4, we will see that these auxiliary elements are useful in the representation theory of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

Definition 3.5. For each $i \in \{1, \dots, n-2\}$, we define the intertwining element φ_i to be the element

(7)
$$\varphi_i = 1 + s_i(g_i - g_{i+1}) \in \mathbf{H}^{\mathfrak{sl}_n}(c).$$

The next proposition shows how well the intertwining elements behave with the elements g_1, g_2, \dots, g_{n-1} .

Proposition 3.6. The following relation holds in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$:

$$g_j \varphi_i = \varphi_i g_{s_i(j)}$$

for $i \in \{1, \cdots, n-2\}$ and $j \in \{1, \cdots, n-1\}$

Proof. Let $i \in \{1, \dots, n-2\}$. From Lemma 3.2, we directly see that the following equations hold:

(8)
$$g_i s_i = s_i s_i g_i s_i = s_i (g_{i+1} - s_i) = s_i g_{i+1} - 1,$$

(9)
$$g_{i+1}s_i = (s_ig_is_i + s_i)s_i = s_ig_i + 1.$$

Thus, we obtain

$$g_i \varphi_i = g_i (1 + s_i (g_i - g_{i+1}))$$

= $g_i + g_i s_i (g_i - g_{i+1})$
= $g_i + (s_i g_{i+1} - 1)(g_i - g_{i+1})$
= $g_i + s_i g_{i+1} (g_i - g_{i+1}) - (g_i - g_{i+1})$
= $s_i (g_i - g_{i+1}) g_{i+1} + g_{i+1}$
= $(s_i (g_i - g_{i+1}) + 1) g_{i+1} = \varphi_i g_{i+1}.$

Similarly, one can easily check the relation $g_{i+1}\varphi_i = \varphi_i g_i$ holds.

For $j \in \{1, \dots, n-1\}$ with $j \neq i, i+1$, note that the element g_j commutes with s_i as well as $g_i - g_{i+1}$, from which it follows that the relation $g_j \varphi_i = \varphi_i g_j$ holds.

From the following proposition, we see $\varphi_i \in \mathcal{G}$ for each $i \in \{1, \dots, n-2\}$. In particular, φ_i^2 commutes with the elements g_1, g_2, \dots, g_{n-1} .

Proposition 3.7. For each $i \in \{1, \dots, n-2\}$, the following equation holds in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$:

(10) $\varphi_i^2 = (1 + g_i - g_{i+1})(1 - g_i + g_{i+1}).$

Proof. It is straightforward. Indeed, by proposition 3.6 and equation (7), we obtain

$$\begin{aligned} \varphi_i^2 &= (1 + s_i(g_i - g_{i+1}))\varphi_i \\ &= \varphi_i + s_i\varphi_i(g_{i+1} - g_i) \\ &= \varphi_i - s_i(1 + s_i(g_i - g_{i+1}))(g_i - g_{i+1}) \\ &= \varphi_i - s_i(g_i - g_{i+1}) - (g_i - g_{i+1})^2 \\ &= 1 - (g_i - g_{i+1})^2 \\ &= (1 + g_i - g_{i+1})(1 - g_i + g_{i+1}). \end{aligned}$$

3.3. Raising element

Together with the intertwing elements, we introduce two more auxiliary elements in this paper. One is the raising element and the other is the lowering element.

Definition 3.8. The element

(11)
$$r = x_1 s_1 \cdots s_{n-2} \in \mathbf{H}^{\mathfrak{sl}_n}(c).$$

is said to be the raising element.

Remark 3.9. The element x_1 is not a zero-divisor in $\mathbf{H}^{\mathfrak{sl}_n}(c)$ by the PBW theorem, and s_1, \dots, s_{n-2} are all invertible elements in $\mathbf{H}^{\mathfrak{sl}_n}(c)$. Hence, the raising element $r = x_1 s_1 \cdots s_{n-2}$ is not a zero-divisor.

The following lemma gives relations between the raising element r and the elements g_i in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

Proposition 3.10. The raising element r with the n-1 elements g_1, g_2, \dots, g_{n-1} satisfies the following relations in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

$$g_1 r = r \left(g_{n-1} - \frac{1}{c} \right),$$

$$g_i r = r g_{i-1} \qquad (i \in \{2, \cdots, n-1\})$$

Proof. Let $w = s_1 \cdots s_{n-2}$. Note $x_1 w = w x_{n-1}$ and $y_1 w = w y_{n-1}$. Hence, we see that the first relation holds by a direct computation as

follows.

$$g_{1}r = \left(-\frac{1}{c}x_{1}y_{1} + s_{1n}\right)x_{1}w$$

$$= \left(-\frac{1}{c}x_{1}\left(x_{1}y_{1} + 1 - c\sum_{j=2}^{n}s_{1j} - cs_{1n}\right) + s_{1n}x_{1}\right)w$$

$$= \left(-\frac{1}{c}x_{1}^{2}y_{1} - \frac{1}{c}x_{1} + x_{1}\sum_{j=2}^{n}s_{1j} + x_{1}s_{1n} - x_{1}s_{1n}\right)w$$

$$= x_{1}\left(-\frac{1}{c}x_{1}y_{1} - \frac{1}{c} + \sum_{j=2}^{n}s_{1j}\right)w$$

$$= x_{1}w\left(-\frac{1}{c}x_{n-1}y_{n-1} - \frac{1}{c} + \sum_{j=1}^{n-2}s_{j,n-1} + s_{n-1,n}\right)$$

$$= r\left(g_{n-1} - \frac{1}{c}\right)$$

We now suppose $i \in \{2, \dots, n-1\}$. Since $x_i w = w x_{i-1}$ and $y_i w = w y_{i-1}$, we obtain

$$g_{i}r = \left(-\frac{1}{c}x_{i}y_{i} + s_{1i} + \left(\sum_{j=2}^{i-1}s_{ji}\right) + s_{in}\right)x_{1}w$$

$$= \left(-\frac{1}{c}x_{i}(x_{1}y_{i} + cs_{1i}) + x_{i}s_{1i} + x_{1}\left(\sum_{j=2}^{i-1}s_{ji}\right) + x_{1}s_{in}\right)w$$

$$= x_{1}\left(-\frac{1}{c}x_{i}y_{i} + \left(\sum_{j=2}^{i-1}s_{ji}\right) + s_{in}\right)w$$

$$= x_{1}w\left(-\frac{1}{c}x_{i-1}y_{i-1} + \left(\sum_{j=1}^{i-2}s_{j,i-1}\right) + s_{i-1,n}\right) = rg_{i-1}.$$

3.4. Lowering operator

Definition 3.11. The element

(12) $\ell = -\frac{1}{c}(s_{n-1}\cdots s_2s_1y_1 - s_{n-2}\cdots s_2s_1y_1g_1) \in \mathbf{H}^{\mathfrak{sl}_n}(c).$ is said to be the **lowering element**.

We will see that both $r\ell$ and ℓr belong to \mathcal{G} . In particular, the products $r\ell$, ℓr commute with the elements $g_1, g_2, \cdots, g_{n-1}$.

Lemma 3.12. The raising element r and the lowering element ℓ satisfy the relations:

$$r\ell = (1+g_1)(1-g_1),$$

$$\ell r = (1+g_{n-1}-\frac{1}{c})(1-g_{n-1}+\frac{1}{c}).$$

Proof. Recall that we denote by s_{1n} the element

$$s_1 \cdots s_{n-2} s_{n-1} s_{n-2} \cdots s_1 \in \mathbf{H}^{\mathfrak{sl}_n}(c).$$

Thus, we obtain

$$r\ell = -\frac{1}{c}(x_1s_{1n}y_1 - x_1y_1g_1)$$

= $-\frac{1}{c}(-s_{1n}x_1y_1 - x_1y_1g_1)$
= $-\frac{1}{c}(cs_{1n}(g_1 - s_{1n}) + c(g_1 - s_{1n})g_1)$
= $1 - g_1^2 = (1 + g_1)(1 - g_1).$

On the other hand, together with Proposition 3.10, the relation

$$r\ell = (1+g_1)(1-g_1)$$

implies

$$r\ell r = (1+g_1)(1-g_1)r = r \left(1+g_{n-1}-\frac{1}{c}\right) \left(1-g_{n-1}+\frac{1}{c}\right).$$

Hence, it follows that the relation

$$\ell r = \left(1 + g_{n-1} - \frac{1}{c}\right) \left(1 - g_{n-1} + \frac{1}{c}\right)$$

holds because the raising element r is not a zero-divisor in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ as we have seen in Remark 3.9.

From the previous lemma, we obtain a relation between the lowering element ℓ and the elements g_i .

Proposition 3.13. The lowering element ℓ with the n-1 elements g_1, g_2, \dots, g_{n-1} satisfies the following relations in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$.

$$g_i \ell = \ell g_{i+1}, \quad (i \in \{1, \cdots, n-2\})$$

 $g_{n-1} \ell = \ell (g_1 + \frac{1}{c})$

Proof. Note that $\ell r = (1 + g_{n-1} - \frac{1}{c})(1 - g_{n-1} + \frac{1}{c})$ commutes with all the elements g_1, g_2, \dots, g_{n-1} . By Proposition 3.10, we obtain

$$g_i \ell r = \ell r g_i = \begin{cases} \ell g_{i+1} r & (i \in \{1, \cdots, n-2\}), \\ \ell (g_1 + \frac{1}{c}) r. \end{cases}$$

Since the raising element r is not a zero-divisor in the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ (Remark 3.9), we have

$$g_i \ell = \begin{cases} \ell g_{i+1} & (i \in \{1, \cdots, n-2\}), \\ \ell (g_1 + \frac{1}{c}). \end{cases}$$

4. Applications and Outlook

As we mentioned in Section 1, we may use the elements we introduce in Section 3 in order to study a structure of a given $\mathbf{H}^{\mathfrak{sl}_n}(c)$ -module. Here we provide simple applications and discuss what we expect to be able to do with these elements.

4.1. Applications: representation theory of $\mathbf{H}^{\mathfrak{sl}_n}(c)$

Recall that \mathcal{G} denotes the commutative subalgebra of $\mathbf{H}^{\mathfrak{sl}_n}(c)$ generated by the elements $g_1, g_2, \cdots, g_{n-1}$. Hence, when we have an $\mathbf{H}^{\mathfrak{sl}_n}(c)$ module, it is natural to consider simultaneous eigenvectors in the module M for the actions of all elements of \mathcal{G} .

Definition 4.1. Let M be an $\mathbf{H}^{\mathfrak{sl}_n}(c)$ -module. An (n-1)-tuple $\mathbf{a} = (a_1, a_2, \cdots, a_{n-1}) \in \mathbb{C}^{n-1}$ is called a **weight** of M if there exists a nonzeo vector $v \in M$ such that $g_i \cdot v = a_i v$ for all $i \in \{1, 2, \cdots, n-1\}$, and such a vector v is called a **weight vector** of weight \mathbf{a} .

Given a weight vector v in an $\mathbf{H}^{\mathfrak{sl}_n}(c)$ module, we can produce several weight vectors from the given weight vector v using the auxiliary elements defined in Section 3. To be precise, we consider the actions of the intertwining elements φ_i on a module, which send weight vectors to weight vectors or zero.

Theorem 4.2. Let M be an $\mathbf{H}^{\mathfrak{sl}_n}(c)$ -module. If a vector $v \in M$ is a weight vector of weight $\mathbf{a} = (a_1, a_2, \cdots, a_{n-1}) \in \mathbb{C}^{n-1}$, then $\varphi_i \cdot v$ is either a weight vector of weight $(a_1, \cdots, a_{i+1}, a_i, \cdots, a_{n-1})$ or zero. Furthermore, $\varphi_i \cdot v = 0$ happens only if $a_i - a_{i+1} \in \{-1, 1\}$.

Proof. Let $v \in M$ be a weight vector of weight $(a_1, a_2, \cdots, a_{n-1}) \in \mathbb{C}^{n-1}$. Then by Proposition 3.6, we directly see

$$g_j \cdot (\varphi_i \cdot v) = \varphi_i \cdot (g_{s_i(j)} \cdot v) = a_{s_i(j)} v$$

from which it follows that $\varphi_i \cdot v$ is either a weight vector of weight

$$(a_1, \cdots, a_{i+1}, a_i, \cdots, a_{n-1}) \in \mathbb{C}^{n-1}$$

or zero.

Now assume $a_i - a_{i+1} \notin \{-1, 1\}$ additionally. Then by Proposition 3.7, we obtain

$$\varphi_i \cdot (\varphi_i \cdot v) = (1 + a_i - a_{i+1})(1 - a_i + a_{i+1})v \neq 0;$$

hence, we have $\varphi_i \cdot v \neq 0$.

We may also apply the results in Proposition 3.10 and Proposition 3.13 to the representation theory of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$. Indeed, we directly prove the following theorem using Proposition 3.10 and Proposition 3.13 in a similar way to the proof of Theorem 4.2.

Theorem 4.3. Let M be an $\mathbf{H}^{\mathfrak{sl}_n}(c)$ -module and let $v \in M$ be a weight vector of weight $\mathbf{a} = (a_1, a_2, \cdots, a_{n-1}) \in \mathbb{C}^{n-1}$. Then $r \cdot v$ is either a weight vector of weight $(a_{n-1} - \frac{1}{c}, a_1, a_2, \cdots, a_{n-2})$ or zero, and $r \cdot v = 0$ happens only if $a_{n-1} - \frac{1}{c} \in \{-1, 1\}$. Also, $\ell \cdot v$ is either a weight vector of weight $(a_2, \cdots, a_{n-1}, a_1 + \frac{1}{c})$ or zero, and $\ell \cdot v = 0$ happens only if $a_1 \in \{-1, 1\}$.

4.2. Outlook

Theorem 4.2 and theorem 4.3 suggest a combinatorial appoach to the representation theory of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ in terms of weights of a given $\mathbf{H}^{\mathfrak{sl}_n}(c)$ -module as in [6] for the algebra $\mathbf{H}^{\mathfrak{gl}_n}(c)$. For example, we may apply Suzuki's proof of Theorem 7.2 in [5] in order to prove the fact that for a generic c, the polynomial representation of the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ admits a basis consisting of weight vectors.

Furthermore, we expect various results on the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ to be proved or explained in terms of the modified Dunkl-Cherednik elements by using the elementary representation theory or combinatorics. One of the interesting results on the algebra $\mathbf{H}^{\mathfrak{sl}_n}(c)$ is that there exists a r^{n-1} -dimensional representation when $c = \frac{r}{n}$ with $\gcd(r, n) = 1$. On the other hand, there is the notion of the (r, n)-rational parking functions in combinatorics, and it is well known that there are exactly r^{n-1} parking functions. We expect the notion of weights we defined in this paper to

be a bridge between representation-theoretic values and combinatorial statistic of parking functions.

References

- Damien Calaque, Benjamin Enriquez, and Pavel Etingof, Universal KZB equations: the elliptic case, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (2009), 165-266.
- [2] Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147(2) (2002), 243-348.
- [3] Ivan Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106(2) (1991), 411-431.
- [4] Ivan Cherednik, Double affine Hecke algebras and difference Fourier transforms, Invent. Math. 152(2) (2003), 213-303.
- [5] Takeshi Suzuki, Rational and trigonometric degeneration of the double affine Hecke algebra of type A, Int. Math. Res. Not. 37 (2005), 2249-2262.
- [6] Takeshi Suzuki and Monica Vazirani, Tableaux on periodic skew diagrams and irreducible representations of the double affine Hecke algebra of type A, Int. Math. Res. Not. 27 (2005), 1621-1656

Gicheol Shin

Department of Mathematics Education, Korea National University of Education, Cheongjusi, Chungbuk 28173, Republic of Korea. E-mail: gshin@ucdavis.edu