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USEFUL OPERATORS ON REPRESENTATIONS OF

THE RATIONAL CHEREDNIK ALGEBRA OF TYPE sln

Gicheol Shin

Abstract. Let n denote an integer greater than 2 and let c denote
a nonzero complex number. In this paper, we introduce a family
of elements of the rational Cherednik algebra Hsln(c) of type sln,
which are analogous to the Dunkl-Cherednik elements of the ra-
tional Cherednik algebra Hgln(c) of type gln. We also introduce
the raising and lowering element of Hsln(c) which are useful in the
representation theory of the algebra Hsln(c), and provide simple
results related to these elements.

1. Introduction

Throughout this paper, let n denote an integer greater than 2, and
let c denote a nonzero complex number unless otherwise stated.

Roughly speaking, the rational Cherednik algebra Hgln(c) of type
gln associated with c is the algebra generated by two polynomial sub-
algebras C[x1, x2, · · · , xn], C[y1, y2, · · · , yn], and the symmetric group
Sn subject to certain relations. The algebra Hgln(c) acts on the space
C[x1, x2, · · · , xn] of all polynomials in n variables x1, x2, · · · , xn in the
following way. The element xi acts as multiplication by xi, and the el-
ement w ∈ Sn permutes the variables x1, x2, · · · , xn naturally. On the
other hand, the element yi acts as the Dunkl operator:

Di =
∂

∂xi
− c

∑
j 6=i

1

xi − xj
(1− sij).
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In [3], Cherednik introduced a family of commuting elements
of Hgln(c):

ui = −1

c
xiyi +

i−1∑
p=1

spi (i ∈ {1, 2, · · · , n}),

whose actions on C[x1, x2, · · · , xn] are called the Dunkl-Cherednik oper-
ators. He proved that there exists a basis of the space C[x1, x2, · · · , xn]
consisting of simultaneous eigenvectors for the Dunkl-Cherednik opera-
tors and each nontrivial eigenspace is one-dimensional for a generic c.
The simultaneous eigenvectors are also called non-symmetric Jack poly-
nomials. Furthermore, Cherednik completely classified all isomorphism
calsses of irreducible modules which admit a basis consisting of simulta-
neous eigenvectors for the actions of the elements ui in [4]. Suzuki and
Vazirani recovered his classification by combinatorial means in [6].

The rational Cherednik algebra Hsln(c) of type sln, which is a subal-
gebra of Hgln(c) and its representations have been studied as well. For
example, when c = r

n with gcd(r, n) = 1, the algebra Hsln(c) admits a
finite dimensional representation. However, these results on the alge-
bra Hsln(c) were obtained by totally different means from Cherednik’s
method for the algebra Hgln(c). Indeed, it is not possible to apply his
method to the representation theory of the subalgebra Hsln(c) naively.
The main obstacle is that the elements ui does not belong to the subal-
gebra Hsln(c).

The purpose of this paper is to introduce a family of commuting ele-
ments of Hsln(c) which is analogous to the Dunkl-Cherednik operators,
and to provide several relations among the elements. We expect that
the elements introduced in this paper allows us to show several results
on the algebra Hsln(c) in a purely representation-theoretic way, which
is analogous to Cherednik’s method.

2. Preliminaries

In this section, we shortly review the definitions of the rational Chered-
nik algebras of type gln and sln. All details skipped in this section can
be found in [1] or [2].

2.1. Rational Cherednik algebra of type gln

Recall that n denotes an integer greater than 2 and c ∈ C \ {0}.
The rational Cherednik algebra of type gln associated with c, denoted
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by Hgln(c), is the unital associative C-algebra which has the following
presentation.

Generators: x1, · · · , xn−1, xn, s1, · · · , sn−1, y1, · · · , yn−1, yn
Relations: s2i = 1 (i ∈ {1, · · · , n− 1}),

sisi+1si = si+1sisi+1 (i ∈ {1, · · · , n− 2}),
sisj = sjsi (|i− j| > 1),
xixj = xjxi, yiyj = yjyi (i, j ∈ {1, · · · , n− 1, n}),
sixi = xi+1si, siyi = yi+1si (i ∈ {1, · · · , n− 1}),
sixj = xjsi, siyj = yjsi (j 6= i, i+ 1),

xiyj − yjxi =

{
−csij (i 6= j)

−1 + c
∑

p 6=i sip (i = j)
,

where si,i+1 = si+1,i = si and sij =

{
sisi+1 · · · sj−1 · · · si+1si (i < j)

sisi−1 · · · sj+1 · · · si−1si (i > j)

for i, j ∈ {1, · · · , n− 1} with i 6= j.

Remark 2.1. Many authors provide various presentations of the
rational Cherednik algebra of type gln. We would like to inform that
our presentation is compatible with the definition given in [1].

2.2. Rational Cherednik algebra of type sln

We may define the rational Cherednik algebra of type sln associated
with c as a subalgebra of the algebra Hgln(c).

Definition 2.2. The rational Cherednik algebra (abbreviated
RCA) of type sln associated with c ∈ C−{0}, denoted by Hsln(c), is
the subalgebra of the algebra Hgln(c) generated by x1−xn, · · · , xn−1−xn,
s1, · · · sn−1, and y1 − yn, · · · , yn−1 − yn.

For each i ∈ {1, · · · , n− 1}, we denote xi − xn by xi for convenience.
On the other hand, we denote by yj the element

yj −
1

n
(y1 + · · ·+ yn−1 + yn) (j ∈ {1, · · · , n− 1, n}).

It can be directly seen that the elements y1, · · · , yn−1, yn belong to the
subalgebra Hsln(c) and the following equation holds:

(1) y1 + · · ·+ yn−1 + yn = 0.

Let C[X1, · · · , Xn−1] (resp. C[Y1, · · · , Yn−1]) be the algebra of poly-
nomials in X1, · · · , Xn−1 (resp. Y1, · · · , Yn−1). For a = (a1, · · · , an−1) ∈
(N∪{0})n−1, we denote Xa1

1 · · ·X
an−1

n−1 (resp. Y a1
1 · · ·Y

an−1

n−1 ) by Xa (resp.
Ya).
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We may regard the algebra Hsln(c) as a (infinite dimensional) vector
space over C. The following theorem, which is also known as the PBW
theorem for the rational Cherednik algebra, gives a basis of the vector
space Hsln(c) over C. The proof can be found in [2].

Theorem 2.3 (PBW theorem for the rational Cherednik algebra).
Let X (resp. Y) denote the polynomial algebra C[X1, · · · , Xn−1] (resp.
C[Y1, · · · , Yn−1]), and let CSn denote the group algebra of the symmetric
group Sn. As a vector space over C, the rational Cherednik algebra
Hsln(c) is isomorphic to the tensor product X ⊗ CSn ⊗ Y of the vector
spaces X , CSn and Y. More precisely, the linear map

ι : X ⊗ CSn ⊗ Y −→ Hsln(c)

given by

(2) ι(Xa ⊗ w ⊗Yb) = xa11 · · ·x
an−1

n−1 si1si2 · · · siky
b1
1 · · · y

bn−1

n−1

for a = (a1, · · · , an−1), b = (b1, · · · , bn−1) ∈ (N ∪ {0})n−1 and w ∈ Sn,
where w is represented as a product of the transpositions

(3) w = (i1 i1 + 1)(i2 i2 + 1) · · · (ik ik + 1),

is an isomorphism of vector spaces over C.

Remark 2.4. Due to the PBW theorem, we directly see that the
group algebra CSn is embedded in the algebra Hsln(c). In this sense,
if a permutation w ∈ Sn can be represented as in the equation (3), we
will identify w with the element si1si2 · · · sik in the algebra Hsln(c) in
the paper.

3. Useful Elements

In this section, we introduce a family of elements of the algebra
Hsln(c), which are analogous to the Dunkl-Cherednik elements of the
algebra Hgln(c), introduce auxiliary elements (intertwining elements,
raising element and lowering element), and prove that several relations
among these elements hold. These elements are obtained from the cor-
responding elements of the algebra Hgln(c) by modifying slightly.

3.1. Modified Dunkl-Cherednik elements

By modifying Dunkl-Cherednik operators slightly, we introduce a
family of elements in the algebra Hsln(c).
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Definition 3.1. For each i ∈ {1, 2, · · · , n− 1}, we define the modi-
fied Dunkl-Cherednik element gi to be

(4) gi = −1

c
xiyi +

 i−1∑
j=1

sji

+ sin ∈ Hsln(c).

The first property of the modified Dunkl-Cherednik elements we show
here is that the elements g1, · · · , gn−1 with s1, · · · , sn−2 in Hsln(c) satisfy
the defining relations for the degenerate affine Hecke algebra of type
An−2. We prove this property in Lemma 3.2 and Proposition 3.4.

Lemma 3.2. The following relations hold in the algebra Hsln(c) for
all i, j ∈ {1, · · · , n− 2}:

sigisi = gi+1 − si,(5)

sigjsi = gj (j 6= i, i+ 1).(6)

Proof. Let i ∈ {1, · · · , n− 2}. Then we have

sigisi = si

−1

c
xiyi +

 i−1∑
j=1

sji

+ sin

 si

= −1

c
xi+1yi+1 +

 i−1∑
j=1

sj,i+1

+ si+1,n

= gi+1 − si,i+1 = gi+1 − si.
In the case of j < i, we directly see that the equation sigj = gjsi holds
because si commutes with xj , yj , s1j , · · · , sj−1,j , and sjn.

Now assume i+ 1 < j ≤ n− 2. Then we have

sigjsi = si
(
−1

cxjyj + s1j + · · ·+ sij + si+1,j + · · ·+ sj−1,j + sjn
)
si

= −1
cxjyj + s1j + · · ·+ si+1,j + sij + · · ·+ sj−1,j + sjn = gj .

Remark 3.3. From (5), one can easily show that the following rela-
tion holds:

sigi+1si = gi + si

for all i, j ∈ {1, · · · , n− 2}.

Proposition 3.4. The modified Dunkl-Cherednik elements g1, g2,
· · · , gn−1 commute with each other in the algebra Hsln(c); that is, the
equation gigj = gjgi holds for every i, j ∈ {1, 2, · · · , n− 1}.
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Proof. Without loss of generality, we may assume i < j. We first
show a special case directly: g1g2 = g2g1.

g1g2 = 1
c2
x1y1x2y2 − 1

cx1y1s12 −
1
cx1y1s2n

−1
cs1nx2y2 + s1ns12 + s1ns2n

= 1
c2
x1(x2y1 + cs12 − cs1n)y2 − 1

cx1s12y2 −
1
cx1s2ny1

−1
c (x2 − x1)s1ny2 + s1ns12 + s1ns2n

= 1
c2
x1x2y1y2 + 1

cx1s12y2 −
1
cx1s1ny2

−1
cx1s12y2 −

1
cx1s2ny1 −

1
cx2s12y2

+1
cx1s1ny2 + s1ns12 + s1ns2n

= 1
c2
x1x2y1y2 − 1

cx1s2ny1 −
1
cx2s1ny2 + s2ns1n + s1ns2n

g2g1 = 1
c2
x2y2x1y1 − 1

cx2y2s1n −
1
cs12x1y1

+s12s1n − 1
cs2nx1y1 + s2ns1n

= 1
c2
x2(x1y2 + cs12 − cs2n)y1 − 1

cx2s1ny2 −
1
cx2s12y1

+s12s1n − 1
c (x1 − x2)s2ny1 + s2ns1n

= 1
c2
x1x2y1y2 + 1

cs2s12y1 −
1
cx2s2ny1

−1
cx2s1ny2 −

1
cx2s12y1 + s12s1n

−1
cx1s2ny1 + 1

cx2s2ny1 + s2ns1n

= 1
c2
x1x2y1y2 − 1

cx2s1ny2 −
1
cx1s2ny1 + s1ns2n + s2ns1n

Now assume j ≥ 3. Then by applying Lemma 3.2 repeatedly, we have

gj = sj−1 · · · s2g2s2 · · · sj−1 +

j−1∑
k=2

skj .

Since the element g1 commutes with the element g2 and s2, · · · sn−1, we
obtain g1gj = gjg1.

Let us assume 1 < i < j additionally. Then we also express gi as

gi = si−1 · · · s1g1s1 · · · si−1 +

i−1∑
k=1

ski,

from which it follows that the equation gigj = gjgi holds because the
element gj commutes with g1 and s1, · · · , si.

Let G denote the subalgebra of Hsln(c) generated by the elements
g1, g2, · · · , gn−1. Note that it follows from the previous proposition that
the subalgebra G is a commutative algebra.
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3.2. Intertwing elements

Here we introduce auxiliary elements of the algebra Hsln(c), and give
relations between these elements and the elements gi. In Section 4, we
will see that these auxiliary elements are useful in the representation
theory of the algebra Hsln(c).

Definition 3.5. For each i ∈ {1, · · · , n − 2}, we define the inter-
twining element ϕi to be the element

(7) ϕi = 1 + si(gi − gi+1) ∈ Hsln(c).

The next proposition shows how well the intertwining elements be-
have with the elements g1, g2, · · · , gn−1.

Proposition 3.6. The following relation holds in the algebra Hsln(c):

gjϕi = ϕigsi(j)

for i ∈ {1, · · · , n− 2} and j ∈ {1, · · · , n− 1}.

Proof. Let i ∈ {1, · · · , n− 2}. From Lemma 3.2, we directly see that
the following equations hold:

gisi = sisigisi = si(gi+1 − si) = sigi+1 − 1,(8)

gi+1si = (sigisi + si)si = sigi + 1.(9)

Thus, we obtain

giϕi = gi(1 + si(gi − gi+1))

= gi + gisi(gi − gi+1)

= gi + (sigi+1 − 1)(gi − gi+1)

= gi + sigi+1(gi − gi+1)− (gi − gi+1)

= si(gi − gi+1)gi+1 + gi+1

= (si(gi − gi+1) + 1)gi+1 = ϕigi+1.

Similarly, one can easily check the relation gi+1ϕi = ϕigi holds.
For j ∈ {1, · · · , n − 1} with j 6= i, i + 1, note that the element gj

commutes with si as well as gi − gi+1, from which it follows that the
relation gjϕi = ϕigj holds.

From the following proposition, we see ϕi ∈ G for each i ∈ {1, · · · , n−
2}. In particular, ϕ2

i commutes with the elements g1, g2, · · · , gn−1.

Proposition 3.7. For each i ∈ {1, · · · , n−2}, the following equation
holds in the algebra Hsln(c):

(10) ϕ2
i = (1 + gi − gi+1)(1− gi + gi+1).
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Proof. It is straightforward. Indeed, by proposition 3.6 and equation
(7), we obtain

ϕ2
i = (1 + si(gi − gi+1))ϕi

= ϕi + siϕi(gi+1 − gi)
= ϕi − si(1 + si(gi − gi+1))(gi − gi+1)

= ϕi − si(gi − gi+1)− (gi − gi+1)
2

= 1− (gi − gi+1)
2

= (1 + gi − gi+1)(1− gi + gi+1).

3.3. Raising element

Together with the intertwing elements, we introduce two more auxil-
iary elements in this paper. One is the raising element and the other is
the lowering element.

Definition 3.8. The element

(11) r = x1s1 · · · sn−2 ∈ Hsln(c).

is said to be the raising element.

Remark 3.9. The element x1 is not a zero-divisor in Hsln(c) by the
PBW theorem, and s1, · · · , sn−2 are all invertible elements in Hsln(c).
Hence, the raising element r = x1s1 · · · sn−2 is not a zero-divisor.

The following lemma gives relations between the raising element r
and the elements gi in the algebra Hsln(c).

Proposition 3.10. The raising element r with the n − 1 elements
g1, g2, · · · , gn−1 satisfies the following relations in the algebra Hsln(c).

g1r = r
(
gn−1 − 1

c

)
,

gir = rgi−1 (i ∈ {2, · · · , n− 1})

Proof. Let w = s1 · · · sn−2. Note x1w = wxn−1 and y1w = wyn−1.
Hence, we see that the first relation holds by a direct computation as
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follows.

g1r =
(
−1

cx1y1 + s1n
)
x1w

=

−1

c
x1

x1y1 + 1− c
n∑

j=2

s1j − cs1n

+ s1nx1

w

=

−1

c
x21y1 −

1

c
x1 + x1

n∑
j=2

s1j + x1s1n − x1s1n

w

= x1

−1

c
x1y1 −

1

c
+

n∑
j=2

s1j

w

= x1w

−1

c
xn−1yn−1 −

1

c
+

n−2∑
j=1

sj,n−1 + sn−1,n


= r

(
gn−1 − 1

c

)
We now suppose i ∈ {2, · · · , n − 1}. Since xiw = wxi−1 and yiw =

wyi−1, we obtain

gir =

−1

c
xiyi + s1i +

 i−1∑
j=2

sji

+ sin

x1w

=

−1

c
xi(x1yi + cs1i) + xis1i + x1

 i−1∑
j=2

sji

+ x1sin

w

= x1

−1

c
xiyi +

 i−1∑
j=2

sji

+ sin

w

= x1w

−1

c
xi−1yi−1 +

 i−2∑
j=1

sj,i−1

+ si−1,n

 = rgi−1.

3.4. Lowering operator

Definition 3.11. The element

(12) ` = −1
c (sn−1 · · · s2s1y1 − sn−2 · · · s2s1y1g1) ∈ Hsln(c).

is said to be the lowering element.
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We will see that both r` and `r belong to G. In particular, the
products r`, `r commute with the elements g1, g2, · · · , gn−1.

Lemma 3.12. The raising element r and the lowering element `
satisfy the relations:

r` = (1 + g1)(1− g1),

`r = (1 + gn−1 − 1
c )(1− gn−1 + 1

c ).

Proof. Recall that we denote by s1n the element

s1 · · · sn−2sn−1sn−2 · · · s1 ∈ Hsln(c).

Thus, we obtain

r` = −1
c (x1s1ny1 − x1y1g1)

= −1
c (−s1nx1y1 − x1y1g1)

= −1
c (cs1n(g1 − s1n) + c(g1 − s1n)g1)

= 1− g21 = (1 + g1)(1− g1).

On the other hand, together with Proposition 3.10, the relation

r` = (1 + g1)(1− g1)

implies

r`r = (1 + g1)(1− g1)r
= r

(
1 + gn−1 − 1

c

) (
1− gn−1 + 1

c

)
.

Hence, it follows that the relation

`r =
(
1 + gn−1 − 1

c

) (
1− gn−1 + 1

c

)
holds because the raising element r is not a zero-divisor in the algebra
Hsln(c) as we have seen in Remark 3.9.

From the previous lemma, we obtain a relation between the lowering
element ` and the elements gi.

Proposition 3.13. The lowering element ` with the n− 1 elements
g1, g2, · · · , gn−1 satisfies the following relations in the algebra Hsln(c).

gi` = `gi+1, (i ∈ {1, · · · , n− 2})

gn−1` = `(g1 + 1
c )
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Proof. Note that `r = (1 + gn−1 − 1
c )(1 − gn−1 + 1

c ) commutes with
all the elements g1, g2, · · · , gn−1. By Proposition 3.10, we obtain

gi`r = `rgi =

{
`gi+1r (i ∈ {1, · · · , n− 2}),
`(g1 + 1

c )r.

Since the raising element r is not a zero-divisor in the algebra Hsln(c)
(Remark 3.9), we have

gi` =

{
`gi+1 (i ∈ {1, · · · , n− 2}),
`(g1 + 1

c ).

4. Applications and Outlook

As we mentioned in Section 1, we may use the elements we introduce
in Section 3 in order to study a structure of a given Hsln(c)-module.
Here we provide simple applications and discuss what we expect to be
able to do with these elements.

4.1. Applications: representation theory of Hsln(c)

Recall that G denotes the commutative subalgebra of Hsln(c) gener-
ated by the elements g1, g2, · · · , gn−1. Hence, when we have an Hsln(c)-
module, it is natural to consider simultaneous eigenvectors in the module
M for the actions of all elements of G.

Definition 4.1. Let M be an Hsln(c)-module. An (n − 1)-tuple
a = (a1, a2, · · · , an−1) ∈ Cn−1 is called a weight of M if there exists a
nonzeo vector v ∈ M such that gi · v = aiv for all i ∈ {1, 2, · · · , n− 1},
and such a vector v is called a weight vector of weight a.

Given a weight vector v in an Hsln(c) module, we can produce sev-
eral weight vectors from the given weight vector v using the auxiliary
elements defined in Section 3. To be precise, we consider the actions of
the intertwining elements ϕi on a module, which send weight vectors to
weight vectors or zero.

Theorem 4.2. Let M be an Hsln(c)-module. If a vector v ∈ M
is a weight vector of weight a = (a1, a2, · · · , an−1) ∈ Cn−1, then ϕi · v
is either a weight vector of weight (a1, · · · , ai+1, ai, · · · , an−1) or zero.
Furthermore, ϕi · v = 0 happens only if ai − ai+1 ∈ {−1, 1}.
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Proof. Let v ∈ M be a weight vector of weight (a1, a2, · · · , an−1) ∈
Cn−1. Then by Proposition 3.6, we directly see

gj · (ϕi · v) = ϕi · (gsi(j) · v) = asi(j)v

from which it follows that ϕi · v is either a weight vector of weight

(a1, · · · , ai+1, ai, · · · , an−1) ∈ Cn−1

or zero.
Now assume ai − ai+1 /∈ {−1, 1} additionally. Then by Proposition

3.7, we obtain

ϕi · (ϕi · v) = (1 + ai − ai+1)(1− ai + ai+1)v 6= 0;

hence, we have ϕi · v 6= 0.

We may also apply the results in Proposition 3.10 and Proposition
3.13 to the representation theory of the algebra Hsln(c). Indeed, we
directly prove the following theorem using Proposition 3.10 and Propo-
sition 3.13 in a simliar way to the proof of Theorem 4.2.

Theorem 4.3. Let M be an Hsln(c)-module and let v ∈ M be a
weight vector of weight a = (a1, a2, · · · , an−1) ∈ Cn−1. Then r · v is
either a weight vector of weight (an−1− 1

c , a1, a2, · · · , an−2) or zero, and

r · v = 0 happens only if an−1− 1
c ∈ {−1, 1}. Also, ` · v is either a weight

vector of weight (a2, · · · , an−1, a1 + 1
c ) or zero, and ` · v = 0 happens

only if a1 ∈ {−1, 1}.

4.2. Outlook

Theorem 4.2 and theorem 4.3 suggest a combinatorial appoach to
the representation theory of the algebra Hsln(c) in terms of weights of
a given Hsln(c)-module as in [6] for the algebra Hgln(c). For example,
we may apply Suzuki’s proof of Theorem 7.2 in [5] in order to prove the
fact that for a generic c, the polynomial representation of the algebra
Hsln(c) admits a basis consisting of weight vectors.

Furthermore, we expect various results on the algebra Hsln(c) to be
proved or explained in terms of the modified Dunkl-Cherednik elements
by using the elementary representation theory or combinatorics. One
of the interesting results on the algebra Hsln(c) is that there exists a
rn−1-dimensional representation when c = r

n with gcd(r, n) = 1. On the
other hand, there is the notion of the (r, n)-rational parking functions in
combinatorics, and it is well known that there are exactly rn−1 parking
functions. We expect the notion of weights we defined in this paper to
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be a bridge between representation-theoretic values and combinatorial
statistic of parking functions.
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