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REPRESENTATION AND DUALITY OF UNIMODULAR
C*-DISCRETE QUANTUM GROUPS

JIANG LINING

ABSTRACT. Suppose that D is a C*-discrete quantum group and Do a
discrete quantum group associated with D. If there exists a continuous
action of D on an operator algebra L{H) so that L{H) becomes a D-
module algebra, and if the inner product on the Hilbert space H is D-
invariant, there is a unique C*-representation # of D associated with the
action. The fixed-point subspace under the action of D is a Von Neumann
algebra, and furthermore, it is the commutant of (D) in L{H).

1. Introduction

Let G be a group with a unit e and D is the vector space of complex functions
on (G with finite support. If G is finite, under the pointwise operation D can
be made into a Hopf algebra if we define comultiplication, counit and antipode
respectively by

t) = [flst),

e(f) = fle),

SHEY = 1),
where f € D and s,t € G. We have A(D) C D ® D if we identify D ® D with
functions on G x G. If G is infinite, the range of A is no longer in D @ D.
Notice that for any f,g € D, A(f)(g ® 1) and A(f)(1 ® g) are elements in
D ® D, where 1 is the unit in the multiplier algebra M (D) of D. This leads to
the concept of multiplier Hopf algebras ([3]).

Definition 1.1. Let D be an algebra with a non-degenerate product. A co-
multiplication on D is a homomorphism A: D — M(D® D) so that A(a)(1®b)
and (a ® 1)A(b) are in D ® D and that A is coassociative in the sense that

(@1 DA)(ABG)(A2e))=02A) (e 1)AD)(121®c),
where a,b,c € D, and 1 is the unit of M (D).
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Now consider the linear mappings T and 75 defined on D ® D by
Ti(a®b) = Ala)(1®D),

T2(a ®b) = (a @ 1)A(b).

If the mappings Ty and T: are both bijections from D ® D onto D ® D, (D, A)
is called a multiplier Hopf algebra. If the algebra has also a x-structure so that
the comultiplication A is a *-homomorphism, we then call D a multiplier Hopf
x-algebra. It is easy to see that in a multiplier Hopf *-algebra D, the mappings

a®b—- Ala)(b®1), a®b-— (1Qa)Ab),

are both bijective.

A discrete quantum group is a multiplier Hopf *-algebra (D, A) where the
algebra D is a direct sum of full matrix algebras over C with the natural
involution. Discrete quantum groups were studied firstly as duals of compact
matrix quantum groups [13]. Since the theory of compact quantum groups
was initiated with the fundamental papers of S. L. Woronowicz (For detail,
see [18] and [19]), this class of quantum groups then was carried out and the
theory of discrete quantum groups on the level of C*-algebras was developed
as well ([13]). The algebraic counterparts and generalizations of this theory
came in the form of E. G. Effros, Z. J. Ruan and Van Daele’s theory on duality
for multiplier Hopf algebras with invariant functionals ([5], [7]). It was also
Van Daele who use multiplier Hopf algebras to give a description for discrete
quantum groups without reference to their compact duals ([4]).

Let D be a discrete quantum group. There is a unique element z in D
satisfying z = 2* = 22, £(z) =1 and Vh € D,

hz = zh = ¢(h)=.

We call such an element a cointegral [6]. Using the cointegral, [9] presents
a duality theory between a finite dimensional discrete quantum group ant its
fixed-point subalgebra in an operator algebra L(H) where L(H) is a D-module
algebra, and H is a Hilbert space. Such a duality theory has its inherent
physical meaning. In detail, suppose that G is a finite group and D(G) is its
double algebra. Also suppose that G is the field algebra of G-spin model. There
is a natural action of D(G) on G so that G becomes a D(G)-module algebra.
Then the observable algebra O, which is a D(G)-invariant subalgebra of G, is
obtained. When an irreducible representation, associated to a D(G)-invariant
state, m of G is given, there emerges a realization of D(G) so that D(G) and
7(0) are commutants of each other ([16]). Besides this example, the Schur-
Weyl duality between the symmetric group and the general linear group ([8],
[17]), the Jimbo-Schur-Weyl duality between quantum group of type A and
Hecke algebra ([10], [11]), and so on, fit into the scheme given in [9]. This
paper extends the result of [9] and gets a duality result between a unimodular
C*-discrete quantum group (i.e., a C*-discrete quantum group whose left and
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right integrals coincide) and its fixed-point subalgebra in L(H) as well. As to
the nonunimodular case, it is under consideration now.

All algebras in this paper will be x-algebras over the complex field C. For
general results on Hopf algebras one can refer to the books of Abe ([1]) and
Sweedler ([15]). We shall use m, A, e and S for the multiplication, the comul-
tiplication, the counit and the antipode respectively. Also we shall adopt the
summation convention, which is standard in Hopf algebra theory. In a multi-
plier Hopf algebra D, the formular m (¢d ® S) A (b) = £ (b) 1 can be understand
as, for example,

Z ab(l b(z =& (b) a,

where a,b € D and (e ® 1) A ( ) = 2 v @b(1) ®b(a). Here we call byy) is covered
by a. Also the formular (e ® 1 ® 1)(A ® L) ( (b) (1 ® ¢)) can be written as

Z ab(1y ® beay ® bzyc,

(®)
where a,b,c € D. One has to make sure that at least all but one factor b(ry is
covered by an element in D.

2. Unimodular C*-discrete quantum group and its fixed-point
algebra in L(H)

Suppose that (D, Ap) is a C*-discrete quantum group. There exists a com-
pact quantum group (B,Ag) so that (D,Ap) is the dual of (B,Ag) in the
sense of [13]. Let A be the set of equivalent classes of all irreducible unitary
representations of I3, then

D= @)\EAMn,\a

where n) is the dimension of the representation corresponding to A ([14]). This
means that D consists of infinite families (ma), ., such that my € M,,, and
for any € > 0 there exists a finite subset F' C A such that ||my|| < ¢ for all
A € A\ F. In other words, D is the restricted direct sum of the family of matrix
algebras (Mn,)ca ([12]). Let Dy be the Pederson ideal of D, i.e., the minimal
dense ideal of D. It is easy to see that Dy is the algebraic direct sum of the
same family of matrix algebras (M,, ), ca- Suppose that A is the restriction of
the map Ap to Dy. The pair (Dg, A) is a discrete quantum group. We shall
refer to (Dy, A) as a discrete quantum group associated with (D, Ap).

It is well known that every C*-algebra has an approximate unit. Now sup-
pose that D = @xeaM,, is a C*-discrete quantum group, and that Dy is
the discrete quantum group associated with D. Suppose that F C A is a fi-
nite set, under the inclusion relation F := {F|F C A} is a directed set. Set
ep = ZAGF ey, where ey is the unit of matrix algebra M,, .

Proposition 2.1. The net (e, )per is an approzimate unit in D.
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Proof. Tt is clear that e, is a central idempotent element in Dy, and that for
any finite sets F; C Fy, €r, < €. Now for z € D, notice that Dy is dense in
D, Ve > 0, there exists an element zo € Dy so that ||z — zo|| < £. One can
suppose that zg = EAE% ay, where F C A is a finite set and a) € M,,. Also
for an arbitrary finite set F' so that A D F D Fy,

To€, = €T = Xo.
Therefore for F D Fy,

llze, — x| l(z — z0) e, + zoe, — 20 + 20 — 2|

l{z — @0) €, || + |lzoe, — Tol| + [lzo — ||
(z — zo) e, || + llzo — ||

Iz — o)l llex || + llzo — =|

e.

AN TTIA

Similarly for F' 2 Fy one have |le,z — z|| < &. This completes the proof. O

Definition 2.2. A linear functional ¢ on D is called a left integral if
(id@ @) Afa) =¢(a)l
for all @ € D. Similarly a linear functional 1 on D is called right integral if

(Y ®id) A(a) =1 (a) 1 for all e € D. We call a (C*-) discrete quantum group
unimodular if its left and right integrals coincide.

We have the following characterizations of unimodularity for C*-discrete
quantum group [13].

Lemma 2.3. Let (D, Ap) be a C*-discrete quantum group and (Do, A) the dis-
crete quantum group associated with (D, Ap). The following three statements
are equivalent:

1) (D, A) is unimodular;

2) the antipode S of (Dy, A) is bounded,

3) the antipode S of (Do, A) is involutive, namely, S? = id.

From now on, suppose that D = ©xeaM,, is a unimodular C*-discrete
quantum group and that Dy is the discrete quantum group associated with D.
Then the antipode S on Dy is a *-anti-homomorphism and satisfies the relation
S? =id.

Lemma 2.4. If S? = id, for all a,b € Dy we have

> aS(b)bay = e(b)a,
(b)

Z b(Q)S(b(l))a = E(b)a,
(®)
where A (b) (1 ®a) = Z(b) by ® b(pya.
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Proof. Notice that Dy is a discrete quantum group, for a,b € Dy
> S (b)) bzya = e (b) a.
{b)
Applying the antipode S on both sides, one have
e®)S(a) = Y4 9(a)S (b)) S* (b))
Xy S (a)S (b)) by

Replacing S(a) by a, then

Z asS (b(g)) b(l) =& (b) a.

(5
Similarly we can prove the second equation and we omit it here. |
Definition 2.5. Let A be a *-closed operator algebra in L(H) with a unit I.

If there is a continuous bilinear mapping (-, : D x A — A so that for a,b € D
and P, T € A,

(a,I) = e(a)l,
(ab,P) = (a,(b,P)),
<a’P*> = (S(a*)v‘P)*’
(@, P-(4,T)) = Y, (aq)P)(aghT),

where A(a) (1®b) = >() 84(1) ® a2)b, A is called a D-module algebra.

We will use a(T") for the element {a,T). If A is a D-module algebra, it is

easy to see
a (b (T) P) = Z a(l)b (T) a(2) (P) .
(a)

Also if D is a finite dimensional C*-discrete quantum group, it has a unit
and Dy = D. By z we denote its cointegral element, the mapping z (-) is
a conditional expectation. That is to say, it is a positive mapping with bi-
modular property, and therefore is automatically continuous [9].

Proposition 2.6. Suppose that D is a C*-discrete quantum group and Dy the
discrete quantum group associated with D. If L(H) is a D-module algebra and
z 18 the cointegral in Dy, set

O={TeL(H):z(T)=T}.
Then
O={TeLH): MT)=¢eh)T, Yhe Do},
and it is a nonzero C*-algebra.

Proof. Since ¢(z) = 1, one have z(I) = I and O is a nonzero subspace in L(H).
It is clear that

{T € L(H) : ((T) = e(h)T, Vhe Do} CO.
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On the other hand, suppose that T € L(H) so that z(T) = T, ie. T € O.
Then for h € Dy,
hM(ID)=h(zT)=hz(TY=c(h)2(T)=¢c(h)T.

Thus O = {T € L(H) : h(T) = e(h)T, Vh € Dy}.

For T € O, since S(z*) = z*,

2(T") = (S(")(T)" = =(T)) =T,

one have T* € O, and O is closed under the *-operation.

Now we prove that O is an algebra. Indeed, VF,G € O,

z(FG) z(F (2(G)))

22 2(1) (F) 2(2)2 (G)
z(F) 2(G)
FG.
Here we use the relation A (z) (1® z) = Zéz) 2(1) ® 2(2)2 = 2@z [6]. Therefore
O is a nonzero *-algebra. .

At last, suppose that T' € O, the closure of O under the uniform topology

in L(H), there exists a sequence {T,,} in O so that lim,,_, T, = 7. Since the
mapping z(-) is continuous,

2(T) =z (lim T,) = lm 2(T,) =T.

This implies that 7' € O and O is closed under the C*-norm. Therefore O is a
C*-algebra. O

Remark. The algebra O is called an observable algebra in L{H). We will see
in Theorem 3.3 that O is a Von Neumann algebra. Also since the discrete
quantum group Dy is dense in D and L(H) is a D-module algebra,

O={TeL(H): W(T)=e(W)T, YheD}.
3. Representation and duality of D

In this section we still suppose that L(H) is a D-module algebra and will
build a duality theory between D and O, where H is a separate Hilbert space.

Definition 3.1. We call the inner product (, ) on a Hilbert space H is D-
invariant, if there is a vacuum vector Q € H of norm one so that Va € D,
T € L(H),

(@a(T),Q) =¢c(a) (TQ,Q).

Theorem 3.2. If the inner product (, ) on H is D-invariant, there ezists a
unique C*-homomorphism 6 : D — L(H) with the following two properties:
Va,b € Dy, T € L(H),

(3.1) 0(a) () = e(a),

(3.2) 8(b)a(T) D 0(ba)) TO (S (a)) ,
(a)
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where ba = 37, baqye (ag)) -

Proof. We divide the proof into four parts.

1) Firstly for a € Dy we construct a mapping fo(a) on a dense subspace of
H. To do this, let e be an arbitrary central idempotent element in Dy. Given
a € Dy and P,T € L(H),

(ae(T)Q,PQ) = (ea(T)Q, PQ)

(P~ (ea (T) ), 9)

= Z(a) (P reaqe (agz)) (1)) 0,9)
= L e () (P ean (1) 2,9
2y € S (a@)) (P eaqy (
Z(a) (s (a)) (P* reaq) (T))
Replacing P§) by b(P)), where b € Dy,

(ae (T)Q,b(P)Q)

f

(ac) (S (b*

[
MMM

® —~ Un
~—

o

*

e

N —" N

Thus we have
(ae (T) 0, b(P) Q) = (ea (T)LL(P)Q) = (e(T)N,a"b(P)Q).

Considering the fact that the set {b(P)Q[b € Dy, P € L(H)} is dense in H, the
relation e (T') 2 = 0 implies that ae (T) Q = 0. Thus for a € Dy, set

o (a) : e(T)2 — ae (T) N

where e is an arbitrary central idempotent element, fo(a) is well defined on the
dense subspace {e (T)Q : T € L(H)} of H and satisfies the relation 6, (a)" =
9() (CL*)

2) Secondly we construct a C*-homomorphism 8 : D — L(H). For TQ €
H and b € Dy, since the net {e,|F € F} is an approximate unit in D,
}ierx;_ep (TYQ =TQ. Thus

2

I

(6o (a) (e- (T)£2),b(P) Q) i (ae, (T)Q,0(P)Q)
}iénf (ex (T)Q,a*b(P)Q)

= (TQ,a*b(P)Q)
= @(D)Q,b(P)Q).

lim
FeF
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Using the principle of uniform boundedness,
PLlénfOO (@) (e (1Y) =a(T) Q.
Therefore for a € Dy, the mapping
B(a) : TQ = a(T)Q (T € L{H))

is well defined on H and exactly an extension of 8y(a).

Now for a € Dy we prove that (a) € L(H). Indeed, for z € H with |jz| = 1,
set T, = 2 ® Q, namely, T, (y) = (y, )z, then T,Q = z and ||T,|| = 1. Thus,
1B(a) (@)l 16(a) (T )]

lla (T2) Q]

lla Il

where the mapping a(-) is regarded as a linear bounded operator from L(H)
to L(H). This means that 8(a) € L(H). Also Dy is dense in D, (-) can be
extended by continuity to a C*-homomorphism from D into L(H).

3) The homomorphism € has properties (3.1) and (3.2) given in Theorem 3.2.
Indeed the property (3.1) is obvious. Now for a,b,c € Dy and P € L{H),

Y8 (baq)) TO (S (a@)) (c(P))
@

= > 0(bawy) T (8(S (aw)) (c(P))
(a)

= ZO (ba(l)) -T (S (a(z)) c(P) Q)
(a)

IAN A

= Zba(l) (T -8 (a(z)) C(P)) Q
(a)

=Y bag) (T) -0 (ag) ¢ (P)Q

we have

4) Uniqueness. If there exists another C*-homomorphism ¢' : D — L (H)
with properties (3.1) and (3.2). Namely for a,b € Dy and T € L(H),
9" (a) () e (a)Q,
¢'(b)a(T) Y8 (baq)) T8 (S (ag))) -

hh
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Then for T € L(H), notice that 8 (b) (TQ) = b(T) Q,

6(@OB)TR) = 6 (a)b(T)Q

Yy 0 (ab)) T (S (b)) ©
2w 0 (aba)) Te (bez)) 0

8" (ab) (T)

0 (a) ' (b) (T).

Thus for a,b € Dy, 6’ (a)8 (b) = 6' (a)#' (b). Since 8 is a C*-homomorphism,
the net {#(e,) : F € F} converges in the strong operator topology to the
identity operator on H [2]. Replace a € Dg by e,. € Dy, one can see for b € Dy,
6 (b) =6 (b) and furthermore 6 = §'. This completes the proof. O

The following theorem is the main result of this paper, which gives a duality
theory between #(D) and O in L(H).

Theorem 3.3. Assumptions and notations as in Theorem 3.2. Then
8(D)' =9(Dy) =0,
where the prime denotes the commutant in L(H).

Proof. We firstly prove that 6(a)P = P8(a), where a € Dy and P = z(P) € O.
Indeed for a,b € Dy and T € L(H), since

8(a)P(B(T)Q) = a(Ph(T)

I
ONONC
e 2
==

NA\'/

N
~—
2
2
N
~—~
}ﬂ
pa—e
<

o

P (a) (b(T)Q),

we have 6(a) P = Pf(a). Notice that Dy is dense in D and 6 is a C*-
homomorphism, 6 (z) P = P8 (z) where x € D and P € O. Thus the inclusion
relations

8 (Do) 26(D)' 20
hold, where the prime denotes the commutant in L(H). On the other hand,
suppose that P € 6 (Dp)', that is to say, for a € Dy, 8 (a) P = P6(a). Then

for € Dy, there exists a finite set ¥ € F so that ze, = e,z = x. Using
Theorem 3.2,

Ole.)z(P) = Xyl (eoz) PO (S (22))
Py 0 (erz)) 0 (S (22))
= ¢e(x)Phe,).

Therefore x (P) = e (z) P. This means that P € O and 8 (D)’ € O. Thus
(D) =6 (Dy)" = O. The proof is completed. O
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Remark. Under the conditions given above, O is a von Neumann algebra since
8(D) is closed under the *-operation, and O is the commutant of 6 (D). In
general when D is infinite dimensional, §(D) and 6(Dy) are not von Neumann
algebras. Also, from Theorem 3.3 one can conclude that the irreducible repre-
sentations of O are in one-to-one correspondence with those of #(D). However
even in the case of finite dimensional discrete quantum group, one in general
could not get all irreducible representations of D in L(H).

Furthermore assume that a C*-algebra A is a D-module algebra, and set
0 ={A € A=(4) = 4},

where z is the cointegral in Dy. Suppose that there is an irreducible represen-
tation 7 of A on a Hilbert space H = (7(A)Q) with a vacuum vector 2, which
gives rise to a D-invariant state. Similar to the proofs of Theorem 3.2 and 3.3,
one have the following result.

Corollary 3.4. There exists a unique C*-homomorphism 6 : D — L(H) sat-
isfying the relations: Ya,b € Dy, A € A,
0 (a) () £(a)f2,
6b)r (a(4)) = Z(a) 8 (bagry) m(A)0 (S (a)))

and furthermore,

9(D)' ==(0), 6(D)=n(0),
where the prime denotes the commutant, and the bar denotes the weak closure
in L(H).
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