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CAUCHY–RASSIAS STABILITY OF A GENERALIZED
ADDITIVE MAPPING IN BANACH MODULES

AND ISOMORPHISMS IN C∗–ALGEBRAS

Dong Yun Shin* and Choonkil Park**

Abstract. Let X, Y be vector spaces, and let r be 2 or 4. It is shown that
if an odd mapping f : X → Y satisfies the functional equation

rf(

∑d
j=1 xj

r
)+

∑

ι(j)=0,1∑d
j=1 ι(j)=l

rf(

∑d
j=1(−1)ι(j)xj

r
)

= (d−1Cl −d−1 Cl−1 + 1)
d∑

j=1

f(xj)(‡)

then the odd mapping f : X → Y is additive, and we prove the Cauchy-
Rassias stability of the functional equation (‡) in Banach modules over a
unital C∗-algebra. As an application, we show that every almost linear
bijection h : A → B of a unital C∗-algebra A onto a unital C∗-algebra B
is a C∗-algebra isomorphism when h(2nuy) = h(2nu)h(y) for all unitaries
u ∈ A, all y ∈ A, and n = 0, 1, 2, · · · .

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R
for each fixed x ∈ X. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1)

such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
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for all x, y ∈ X. Rassias [5] showed that there exists a unique R-linear

mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. Găvruta [1] generalized the Rassias’ result: Let G be an

abelian group and Y a Banach space. Denote by ϕ : G × G → [0,∞) a

function such that

ϕ̃(x, y) =
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y

such that

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ G. C. Park [4] applied the Găvruta’s result to linear functional

equations in Banach modules over a C∗-algebra. Several functional equa-

tions have been investigated in [6]–[11].

Throughout this paper, assume that r is 2 or 4, and that d and l are

integers with d > 1 and 1 < l < d
2 .

In this paper, we solve the following functional equation

rf(

∑d
j=1 xj

r
)+

∑

ι(j)=0,1∑d
j=1 ι(j)=l

rf(

∑d
j=1(−1)ι(j)xj

r
)

= (d−1Cl −d−1 Cl−1 + 1)
d∑

j=1

f(xj).(1.i)

We moreover prove the Cauchy-Rassias stability of the functional equation

(1.i) in Banach modules over a unital C∗-algebra. These results are applied

to investigate C∗-algebra isomorphisms in unital C∗-algebras.
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2. An odd functional equation in d variables

Throughout this section, assume that X and Y are real linear spaces.

Lemma 2.1. If an odd mapping f : X → Y satisfies (1.i) for all x1, x2, · · · , xd ∈
X, then f is additive.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is

an odd mapping. Putting x1 = x, x2 = y and x3 = · · · = xd = 0 in (1.i), we

get

(2.1) (d−2Cl−d−2Cl−2+1)rf(
x + y

r
) = (d−1Cl−d−1Cl−1+1)(f(x)+f(y))

for all x, y ∈ X. Since d−2Cl −d−2 Cl−2 + 1 =d−1 Cl −d−1 Cl−1 + 1,

rf(
x + y

r
) = f(x) + f(y)

for all x, y ∈ X. Letting y = 0 in (2.1), we get rf(x
r ) = f(x) for all x ∈ X.

Hence

f(x + y) = rf(
x + y

r
) = f(x) + f(y)

for all x, y,∈ X. Thus f is additive. ¤

3. Stability of an odd functional equation in Banach modules over

a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with norm

| · | and unitary group U(A), and that X and Y are left Banach modules

over a unital C∗-algebra A with norms || · || and ‖ · ‖, respectively.

Given a mapping f : X → Y , we set

Duf(x1, · · · , xd) :=rf(

∑d
j=1 uxj

r
) +

∑

ι(j)=0,1∑d
j=1 ι(j)=l

rf(

∑d
j=1(−1)ι(j)uxj

r
)

− (d−1Cl −d−1 Cl−1 + 1)
d∑

j=1

uf(xj)

for all u ∈ U(A) and all x1, · · · , xd ∈ X.
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Theorem 3.1. Let r = 2 and d > 4. Let f : X → Y be an odd mapping

for which there is a function ϕ : Xd → [0,∞) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jxd) < ∞,(3.i)

‖Duf(x1, · · · , xd)‖ ≤ ϕ(x1, · · · , xd)(3.ii)

for all u ∈ U(A) and all x1, · · · , xd ∈ X. Then there exists a unique A-linear

generalized additive mapping L : X → Y such that

(3.iii) ‖f(x)− L(x)‖ ≤ 1
4(d−4Cl −d−4 Cl−4 + 1)

ϕ̃(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is

an odd mapping. Let u = 1 ∈ U(A). Putting x1 = x2 = x3 = x4 = x and

x5 = · · · = xd = 0 in (3.ii), we have

‖f(2x)− 2f(x)‖ ≤ 1
2(d−4Cl −d−4 Cl−4 + 1)

ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X. So we get

‖f(x)− 1
2
f(2x)‖ ≤ 1

4(d−4Cl −d−4 Cl−4 + 1)
ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸

d−4 times

)

for all x ∈ X. Hence

(3.1) ‖ 1
2n

f(2nx)− 1
2n+1

f(2n+1x)‖

≤ 1
2n+2(d−4Cl −d−4 Cl−4 + 1)

ϕ(2nx, 2nx, 2nx, 2nx, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X and all positive integers n. By (3.1), we have

(3.2) ‖ 1
2m

f(2mx)− 1
2n

f(2nx)‖
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≤
n−1∑

k=m

1
2k+2(d−4Cl −d−4 Cl−4 + 1)

ϕ(2kx, 2kx, 2kx, 2kx, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X and all positive integers m and n with m < n. This shows

that the sequence { 1
2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges for all x ∈ X. So we can

define a mapping L : X → Y by

L(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X. Since f(−x) = −f(x) for all x ∈ X, we have L(−x) = L(x)

for all x ∈ X. Also, we get

‖D1L(x1, · · · , xd)‖ = lim
n→∞

1
2n
‖D1f(2nx1, · · · , 2nxd)‖

≤ lim
n→∞

1
2n

ϕ(2nx1, · · · , 2nxd) = 0

for all x1, · · · , xd ∈ X. So L is a generalized additive mapping. Putting

m = 0 and letting n →∞ in (3.2), we get (3.iii).

Now, let L′ : X → Y be another generalized additive mapping satisfying

(3.iii). By Lemma 2.1, L and L′ are additive. So we have

‖L(x)− L′(x)‖ =
1
2n
‖L(2nx)− L′(2nx)‖

≤ 1
2n

(‖L(2nx)− f(2nx)‖+ ‖L′(2nx)− f(2nx)‖)

≤ 2
2n+2(d−4Cl −d−4 Cl−4 + 1)

ϕ̃(2nx, 2nx, 2nx, 2nx, 0, · · · , 0︸ ︷︷ ︸
d−4 times

),

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that

L(x) = L′(x) for all x ∈ X. This proves the uniqueness of L.

By the assumption, for each u ∈ U(A), we get

‖DuL(x, 0, · · · , 0︸ ︷︷ ︸
d−1 times

)‖ = lim
n→∞

1
2n
‖Duf(2nx, 0, · · · , 0︸ ︷︷ ︸

d−1 times

)‖

≤ lim
n→∞

1
2n

ϕ(2nx, 0, · · · , 0︸ ︷︷ ︸
d−1 times

) = 0
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for all x ∈ X. So

2(d−1Cl −d−1 Cl−1 + 1)L(
ux

2
) = (d−1Cl −d−1 Cl−1 + 1)uL(x)

for all u ∈ U(A) and all x ∈ X. Since L is additive,

(3.3) L(ux) = 2L(
ux

2
) = uL(x)

for all u ∈ U(A) and all x ∈ X.

Now let a ∈ A (a 6= 0) and M an integer greater than 4|a|. Then

| a
M | < 1

4 < 1 − 2
3 = 1

3 . By [2, Theorem 1], there exist three elements

u1, u2, u3 ∈ U(A) such that 3 a
M = u1 + u2 + u3. So by (3.3)

L(ax) = L(
M

3
· 3 a

M
x) = M · L(

1
3
· 3 a

M
x) =

M

3
L(3

a

M
x)

=
M

3
L(u1x + u2x + u3x) =

M

3
(L(u1x) + L(u2x) + L(u3x))

=
M

3
(u1 + u2 + u3)L(x) =

M

3
· 3 a

M
L(x)

= aL(x)

for all a ∈ A and all x ∈ X. Hence

L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)

for all a, b ∈ A(a, b 6= 0) and all x, y ∈ X. And L(0x) = 0 = 0L(x) for

all x ∈ X. So the unique generalized additive mapping L : X → Y is an

A-linear mapping. ¤

Corollary 3.2. Let r = 2. Let θ and p < 1 be positive real numbers.

Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xd)‖ ≤ θ
d∑

j=1

||xj ||p

for all u ∈ U(A) and all x1, · · · , xd ∈ X. Then there exists a unique A-linear

generalized additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 2θ

(2− 2p)(d−4Cl −d−4 Cl−4 + 1)
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xd) = θ
∑d

j=1 ||xj ||p, and apply Theorem 3.1. ¤
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Theorem 3.3. Let r = 2. Let f : X → Y be an odd mapping for which

there is a function ϕ : Xd → [0,∞) satisfying (3.ii) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=1

2jϕ(
x1

2j
, · · · ,

xd

2j
) < ∞

for all x1, · · · , xd ∈ X. Then there exists a unique A-linear generalized

additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 1
4(d−4Cl −d−4 Cl−4 + 1)

ϕ̃(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is

an odd mapping. Let u = 1 ∈ U(A). Putting x1 = x2 = x3 = x4 = x and

x5 = · · · = xd = 0 in (3.ii), we have

‖f(2x)− 2f(x)‖ ≤ 1
2(d−4Cl −d−4 Cl−4 + 1)

ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X. So we get

‖f(x)− 2f(
x

2
)‖ ≤ 1

2(d−4Cl −d−4 Cl−4 + 1)
ϕ(

x

2
,
x

2
,
x

2
,
x

2
, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.1. ¤

Corollary 3.4. Let r = 2. Let θ and p > 1 be positive real numbers.

Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xd)‖ ≤
d∑

j=1

θ||xj ||p

for all u ∈ U(A) and all x1, · · · , xd ∈ X. Then there exists a unique A-linear

generalized additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 2θ

(2p − 2)(d−4Cl −d−4 Cl−4 + 1)
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xd) = θ
∑d

j=1 ||xj ||p, and apply Theorem 3.3. ¤
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Theorem 3.5. Let r = 4. Let f : X → Y be an odd mapping for which

there is a function ϕ : Xd → [0,∞) satisfying (3.ii) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=1

2jϕ(
x1

2j
, · · · ,

xd

2j
) < ∞

for all x1, · · · , xd ∈ X. Then there exists a unique A-linear generalized

additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 1
8(d−4Cl−1 −d−4 Cl−3)

ϕ̃(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is

an odd mapping. Let u = 1 ∈ U(A). Putting x1 = x2 = x3 = x4 = x and

x5 = · · · = xd = 0 in (3.ii), we have

‖f(
x

2
)− 1

2
f(x)‖ ≤ 1

16(d−4Cl−1 −d−4 Cl−3)
ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸

d−4 times

)

for all x ∈ X. So we get

‖f(x)− 2f(
x

2
)‖ ≤ 1

8(d−4Cl−1 −d−4 Cl−3)
ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸

d−4 times

)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.1. ¤

Corollary 3.6. Let r = 4. Let θ and p > 1 be positive real numbers.

Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xd)‖ ≤
d∑

j=1

θ||xj ||p

for all u ∈ U(A) and all x1, · · · , xd ∈ X. Then there exists a unique A-linear

generalized additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ θ

(2p − 2)(d−4Cl−1 −d−4 Cl−3)
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xd) = θ
∑d

j=1 ||xj ||p, and apply Theorem 3.5. ¤
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Theorem 3.7. Let r = 4. Let f : X → Y be an odd mapping for which

there is a function ϕ : Xd → [0,∞) satisfying (3.ii) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jxd) < ∞

for all x1, · · · , xd ∈ X. Then there exists a unique A-linear generalized

additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 1
8(d−4Cl−1 −d−4 Cl−3)

ϕ̃(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is

an odd mapping. Let u = 1 ∈ U(A). Putting x1 = x2 = x3 = x4 = x and

x5 = · · · = xd = 0 in (3.ii), we have

‖f(
x

2
)− 1

2
f(x)‖ ≤ 1

16(d−4Cl−1 −d−4 Cl−3)
ϕ(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸

d−4 times

)

for all x ∈ X. So we get

‖f(x)− 1
2
f(2x)‖ ≤ 1

16(d−4Cl−1 −d−4 Cl−3)
ϕ(2x, 2x, 2x, 2x, 0, · · · , 0︸ ︷︷ ︸

d−4 times

)

for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.1. ¤

Corollary 3.8. Let r = 4. Let θ and p < 1 be positive real numbers.

Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xd)‖ ≤
d∑

j=1

θ||xj ||p

for all u ∈ U(A) and all x1, · · · , xd ∈ X. Then there exists a unique A-linear

generalized additive mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ θ

(2− 2p)(d−4Cl−1 −d−4 Cl−3)
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xd) = θ
∑d

j=1 ||xj ||p, and apply Theorem 3.7. ¤
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4. Isomorphisms in unital C∗-algebras

Throughout this section, assume that A is a unital C∗-algebra with norm

|| · || and unit e, and that B is a unital C∗-algebra with norm ‖ · ‖. Let U(A)

be the set of unitary elements in A.

We are going to investigate C∗-algebra isomorphisms between unital C∗-

algebras.

Theorem 4.1. Let r = 2. Let h : A → B be an odd bijective mapping

satisfying h(2nuy) = h(2nu)h(y) for all u ∈ U(A), all y ∈ A, and n =

0, 1, 2, · · · , for which there exists a function ϕ : Ad → [0,∞) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jxd) < ∞,(4.i)

‖Dµh(x1, · · · , xd)‖ ≤ ϕ(x1, · · · , xd),

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, · · · , 2nu︸ ︷︷ ︸
d times

)(4.ii)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1}, all u ∈ U(A), n = 0, 1, 2, · · · , and all

x1, · · · , xd ∈ A. Assume that (4.iii) limn→∞ 1
2n h(2ne) is invertible. Then

the odd bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Consider the C∗-algebras A and B as left Banach modules over

the unital C∗-algebra C. By Theorem 3.1, there exists a unique C-linear

generalized additive mapping H : A → B such that

(4.iv) ‖h(x)−H(x)‖

≤ 1
4(d−4Cl −d−4 Cl−4 + 1)

ϕ̃(x, x, x, x, 0, · · · , 0︸ ︷︷ ︸
d−4 times

)

for all x ∈ A. The generalized additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx)

for all x ∈ A.
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By (4.i) and (4.ii), we get

H(u∗) = lim
n→∞

1
2n

h(2nu∗) = lim
n→∞

1
2n

h(2nu)∗

= ( lim
n→∞

1
2n

h(2nu))∗ = H(u)∗

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite lin-

ear combination of unitary elements (see [3, Theorem 4.1.7]), i.e., x =∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x∗) = H(
m∑

j=1

λju
∗
j ) =

m∑

j=1

λjH(u∗j ) =
m∑

j=1

λjH(uj)∗

= (
m∑

j=1

λjH(uj))∗ = H(
m∑

j=1

λjuj)∗ = H(x)∗

for all x ∈ A.

Since h(2nuy) = h(2nu)h(y) for all u ∈ U(A), all y ∈ A, and all n =

0, 1, 2, · · · ,
(4.1) H(uy) = lim

n→∞
1
2n

h(2nuy) = lim
n→∞

1
2n

h(2nu)h(y) = H(u)h(y)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (4.1),

2nH(uy) = H(2nuy) = H(u(2ny)) = H(u)h(2ny)

for all u ∈ U(A) and all y ∈ A. Hence

(4.2) H(uy) =
1
2n

H(u)h(2ny) = H(u)
1
2n

h(2ny)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (4.2) as n → ∞, we

obtain

(4.3) H(uy) = H(u)H(y)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is

a finite linear combination of unitary elements, i.e., x =
∑m

j=1 λjuj (λj ∈
C, uj ∈ U(A)), it follows from (4.3) that

H(xy) = H(
m∑

j=1

λjujy) =
m∑

j=1

λjH(ujy) =
m∑

j=1

λjH(uj)H(y)

= H(
m∑

j=1

λjuj)H(y) = H(x)H(y)
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for all x, y ∈ A.

By (4.1) and (4.3),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limn→∞ 1
2n h(2ne) = H(e) is invertible,

H(y) = h(y)

for all y ∈ A.

Therefore, the odd bijective mapping h : A → B is a C∗-algebra isomor-

phism, as desired. ¤

Corollary 4.2. Let r = 2. Let θ and p < 1 be positive real numbers.

Let h : A → B be an odd bijective mapping satisfying h(2nuy) = h(2nu)h(y)

for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, · · · , such that

‖Dµh(x1, · · · , xd)‖ ≤ θ
d∑

j=1

||xj ||p,

‖h(2nu∗)− h(2nu)∗‖ ≤ d 2pnθ

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, 2, · · · , and all x1, · · · , xd ∈ A.

Assume that limn→∞ 1
2n h(2ne) is invertible. Then the odd bijective mapping

h : A → B is a C∗-algebra isomorphism.

Proof. Define ϕ(x1, · · · , xd) = θ
∑d

j=1 ||xj ||p, and apply Theorem 4.1. ¤

Theorem 4.3. Let r = 2. Let h : A → B be an odd bijective mapping

satisfying h(2nuy) = h(2nu)h(y) for all u ∈ U(A), all y ∈ A, and n =

0, 1, 2, · · · , for which there exists a function ϕ : Ad → [0,∞) satisfying (4.i),

(4.ii), and (4.iii) such that

(4.v) ‖Dµh(x1, · · · , xd)‖ ≤ ϕ(x1, · · · , xd)

for µ = 1, i, and all x1, · · · , xd ∈ A. If h(tx) is continuous in t ∈ R for each

fixed x ∈ A, then the odd bijective mapping h : A → B is a C∗-algebra

isomorphism.

Proof. Put µ = 1 in (4.v). By the same reasoning as in the proof of

Theorem 4.1, there exists a unique generalized additive mapping H : A → B
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satisfying (4.iv). By the same reasoning as in the proof of [5, Theorem], the

generalized additive mapping H : A → B is R-linear.

Put µ = i in (4.v). By the same method as in the proof of Theorem 4.1,

one can obtain that

H(ix) = lim
n→∞

1
2n

h(2nix) = lim
n→∞

i

2n
h(2nx) = iH(x)

for all x ∈ A.

For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)

= (s + it)H(x) = λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the generalized additive mapping

H : A → B is C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1. ¤
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