CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C^{*}-ALGEBRAS

Dong Yun Shin* and Choonkil Park**

Abstract. Let X, Y be vector spaces, and let r be 2 or 4 . It is shown that if an odd mapping $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{align*}
r f\left(\frac{\sum_{j=1}^{d} x_{j}}{r}\right)+ & \sum_{\substack{\iota(j)=0,1 \\
\sum_{j=1}^{d} \iota(j)=l}} r f\left(\frac{\sum_{j=1}^{d}(-1)^{\iota(j)} x_{j}}{r}\right) \\
& =\left({ }_{d-1} C_{l}-{ }_{d-1} C_{l-1}+1\right) \sum_{j=1}^{d} f\left(x_{j}\right)
\end{align*}
$$

then the odd mapping $f: X \rightarrow Y$ is additive, and we prove the CauchyRassias stability of the functional equation (\ddagger) in Banach modules over a unital C^{*}-algebra. As an application, we show that every almost linear bijection $h: \mathcal{A} \rightarrow \mathcal{B}$ of a unital C^{*}-algebra \mathcal{A} onto a unital C^{*}-algebra \mathcal{B} is a C^{*}-algebra isomorphism when $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all unitaries $u \in \mathcal{A}$, all $y \in \mathcal{A}$, and $n=0,1,2, \cdots$.

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

[^0]for all $x, y \in X$. Rassias [5] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that
$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$
for all $x \in X$. Găvruta [1] generalized the Rassias' result: Let G be an abelian group and Y a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that
$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$
for all $x, y \in G$. Suppose that $f: G \rightarrow Y$ is a mapping satisfying
$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$
for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow Y$ such that
$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$
for all $x \in G$. C. Park [4] applied the Găvruta's result to linear functional equations in Banach modules over a C^{*}-algebra. Several functional equations have been investigated in [6]-[11].

Throughout this paper, assume that r is 2 or 4 , and that d and l are integers with $d>1$ and $1<l<\frac{d}{2}$.

In this paper, we solve the following functional equation

$$
\begin{aligned}
r f\left(\frac{\sum_{j=1}^{d} x_{j}}{r}\right)+ & \sum_{\substack{\iota(j)=0,1 \\
\sum_{j=1}^{d} \iota(j)=l}} r f\left(\frac{\sum_{j=1}^{d}(-1)^{\iota(j)} x_{j}}{r}\right) \\
& =\left({ }_{d-1} C_{l}-{ }_{d-1} C_{l-1}+1\right) \sum_{j=1}^{d} f\left(x_{j}\right) .
\end{aligned}
$$

We moreover prove the Cauchy-Rassias stability of the functional equation (1.i) in Banach modules over a unital C^{*}-algebra. These results are applied to investigate C^{*}-algebra isomorphisms in unital C^{*}-algebras.

2. An odd functional equation in d variables

Throughout this section, assume that X and Y are real linear spaces.
Lemma 2.1. If an odd mapping $f: X \rightarrow Y$ satisfies (1.i) for all $x_{1}, x_{2}, \cdots, x_{d} \in$ X, then f is additive.

Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Putting $x_{1}=x, x_{2}=y$ and $x_{3}=\cdots=x_{d}=0$ in (1.i), we get
(2.1) $\left({ }_{d-2} C_{l}-{ }_{d-2} C_{l-2}+1\right) r f\left(\frac{x+y}{r}\right)=\left({ }_{d-1} C_{l}-{ }_{d-1} C_{l-1}+1\right)(f(x)+f(y))$
for all $x, y \in X$. Since ${ }_{d-2} C_{l}-{ }_{d-2} C_{l-2}+1={ }_{d-1} C_{l}-{ }_{d-1} C_{l-1}+1$,

$$
r f\left(\frac{x+y}{r}\right)=f(x)+f(y)
$$

for all $x, y \in X$. Letting $y=0$ in (2.1), we get $r f\left(\frac{x}{r}\right)=f(x)$ for all $x \in X$.
Hence

$$
f(x+y)=r f\left(\frac{x+y}{r}\right)=f(x)+f(y)
$$

for all $x, y, \in X$. Thus f is additive.

3. Stability of an odd functional equation in Banach modules over

 a C^{*}-algebraThroughout this section, assume that A is a unital C^{*}-algebra with norm $|\cdot|$ and unitary group $\mathcal{U}(A)$, and that X and Y are left Banach modules over a unital C^{*}-algebra A with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

Given a mapping $f: X \rightarrow Y$, we set

$$
\begin{aligned}
D_{u} f\left(x_{1}, \cdots, x_{d}\right):= & r f\left(\frac{\sum_{j=1}^{d} u x_{j}}{r}\right)+\sum_{\substack{\iota(j)=0,1 \\
\sum_{j=1}^{d} \iota(j)=l}} r f\left(\frac{\sum_{j=1}^{d}(-1)^{\iota(j)} u x_{j}}{r}\right) \\
& -\left({ }_{d-1} C_{l}-{ }_{d-1} C_{l-1}+1\right) \sum_{j=1}^{d} u f\left(x_{j}\right)
\end{aligned}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$.

Theorem 3.1. Let $r=2$ and $d>4$. Let $f: X \rightarrow Y$ be an odd mapping for which there is a function $\varphi: X^{d} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x_{1}, \cdots, 2^{j} x_{d}\right)<\infty \tag{3.i}\\
& \left\|D_{u} f\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{d}\right) \tag{3.ii}
\end{align*}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{1}{4\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \widetilde{\varphi}(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }}) \tag{3.iii}
\end{equation*}
$$

for all $x \in X$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Let $u=1 \in \mathcal{U}(A)$. Putting $x_{1}=x_{2}=x_{3}=x_{4}=x$ and $x_{5}=\cdots=x_{d}=0$ in (3.ii), we have

$$
\|f(2 x)-2 f(x)\| \leq \frac{1}{2\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$. So we get

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{1}{4\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$. Hence

$$
\begin{gather*}
\left\|\frac{1}{2^{n}} f\left(2^{n} x\right)-\frac{1}{2^{n+1}} f\left(2^{n+1} x\right)\right\| \tag{3.1}\\
\leq \frac{1}{2^{n+2}\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \varphi(2^{n} x, 2^{n} x, 2^{n} x, 2^{n} x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
\end{gather*}
$$

for all $x \in X$ and all positive integers n. By (3.1), we have

$$
\begin{equation*}
\left\|\frac{1}{2^{m}} f\left(2^{m} x\right)-\frac{1}{2^{n}} f\left(2^{n} x\right)\right\| \tag{3.2}
\end{equation*}
$$

$$
\leq \sum_{k=m}^{n-1} \frac{1}{2^{k+2}\left({ }_{d-4} C_{l}-d_{-4} C_{l-4}+1\right)} \varphi(2^{k} x, 2^{k} x, 2^{k} x, 2^{k} x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$ and all positive integers m and n with $m<n$. This shows that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges for all $x \in X$. So we can define a mapping $L: X \rightarrow Y$ by

$$
L(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Since $f(-x)=-f(x)$ for all $x \in X$, we have $L(-x)=L(x)$ for all $x \in X$. Also, we get

$$
\begin{aligned}
\left\|D_{1} L\left(x_{1}, \cdots, x_{d}\right)\right\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D_{1} f\left(2^{n} x_{1}, \cdots, 2^{n} x_{d}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x_{1}, \cdots, 2^{n} x_{d}\right)=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{d} \in X$. So L is a generalized additive mapping. Putting $m=0$ and letting $n \rightarrow \infty$ in (3.2), we get (3.iii).

Now, let $L^{\prime}: X \rightarrow Y$ be another generalized additive mapping satisfying (3.iii). By Lemma 2.1, L and L^{\prime} are additive. So we have

$$
\begin{aligned}
& \left\|L(x)-L^{\prime}(x)\right\|=\frac{1}{2^{n}}\left\|L\left(2^{n} x\right)-L^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|L\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|L^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{2}{2^{n+2}\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \widetilde{\varphi}(2^{n} x, 2^{n} x, 2^{n} x, 2^{n} x, \underbrace{0, \cdots, 0}_{d-4 \text { times }}),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $L(x)=L^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of L.

By the assumption, for each $u \in \mathcal{U}(A)$, we get

$$
\begin{aligned}
\|D_{u} L(x, \underbrace{0, \cdots, 0}_{d-1 \text { times }})\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\|D_{u} f(2^{n} x, \underbrace{0, \cdots, 0}_{d-1 \text { times }})\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi(2^{n} x, \underbrace{0, \cdots, 0}_{d-1 \text { times }})=0
\end{aligned}
$$

for all $x \in X$. So

$$
2\left({ }_{d-1} C_{l}-_{d-1} C_{l-1}+1\right) L\left(\frac{u x}{2}\right)=\left({ }_{d-1} C_{l}-_{d-1} C_{l-1}+1\right) u L(x)
$$

for all $u \in \mathcal{U}(A)$ and all $x \in X$. Since L is additive,

$$
\begin{equation*}
L(u x)=2 L\left(\frac{u x}{2}\right)=u L(x) \tag{3.3}
\end{equation*}
$$

for all $u \in \mathcal{U}(A)$ and all $x \in X$.
Now let $a \in A(a \neq 0)$ and M an integer greater than $4|a|$. Then $\left|\frac{a}{M}\right|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By [2, Theorem 1], there exist three elements $u_{1}, u_{2}, u_{3} \in \mathcal{U}(A)$ such that $3 \frac{a}{M}=u_{1}+u_{2}+u_{3}$. So by (3.3)

$$
\begin{aligned}
L(a x) & =L\left(\frac{M}{3} \cdot 3 \frac{a}{M} x\right)=M \cdot L\left(\frac{1}{3} \cdot 3 \frac{a}{M} x\right)=\frac{M}{3} L\left(3 \frac{a}{M} x\right) \\
& =\frac{M}{3} L\left(u_{1} x+u_{2} x+u_{3} x\right)=\frac{M}{3}\left(L\left(u_{1} x\right)+L\left(u_{2} x\right)+L\left(u_{3} x\right)\right) \\
& =\frac{M}{3}\left(u_{1}+u_{2}+u_{3}\right) L(x)=\frac{M}{3} \cdot 3 \frac{a}{M} L(x) \\
& =a L(x)
\end{aligned}
$$

for all $a \in A$ and all $x \in X$. Hence

$$
L(a x+b y)=L(a x)+L(b y)=a L(x)+b L(y)
$$

for all $a, b \in A(a, b \neq 0)$ and all $x, y \in X$. And $L(0 x)=0=0 L(x)$ for all $x \in X$. So the unique generalized additive mapping $L: X \rightarrow Y$ is an A-linear mapping.

Corollary 3.2. Let $r=2$. Let θ and $p<1$ be positive real numbers. Let $f: X \rightarrow Y$ be an odd mapping such that

$$
\left\|D_{u} f\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{2 \theta}{\left(2-2^{p}\right)\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}\right)=\theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}$, and apply Theorem 3.1.

Theorem 3.3. Let $r=2$. Let $f: X \rightarrow Y$ be an odd mapping for which there is a function $\varphi: X^{d} \rightarrow[0, \infty)$ satisfying (3.ii) such that

$$
\widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x_{1}}{2^{j}}, \cdots, \frac{x_{d}}{2^{j}}\right)<\infty
$$

for all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{1}{4\left({ }_{d-4} C_{l}-d_{d-4} C_{l-4}+1\right)} \widetilde{\varphi}(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Let $u=1 \in \mathcal{U}(A)$. Putting $x_{1}=x_{2}=x_{3}=x_{4}=x$ and $x_{5}=\cdots=x_{d}=0$ in (3.ii), we have

$$
\|f(2 x)-2 f(x)\| \leq \frac{1}{2\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$. So we get

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{1}{2\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)} \varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 3.1.
Corollary 3.4. Let $r=2$. Let θ and $p>1$ be positive real numbers. Let $f: X \rightarrow Y$ be an odd mapping such that

$$
\left\|D_{u} f\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \sum_{j=1}^{d} \theta\left\|x_{j}\right\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{2 \theta}{\left(2^{p}-2\right)\left({ }_{d-4} C_{l}-{ }_{d-4} C_{l-4}+1\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}\right)=\theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}$, and apply Theorem 3.3.

Theorem 3.5. Let $r=4$. Let $f: X \rightarrow Y$ be an odd mapping for which there is a function $\varphi: X^{d} \rightarrow[0, \infty)$ satisfying (3.ii) such that

$$
\widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x_{1}}{2^{j}}, \cdots, \frac{x_{d}}{2^{j}}\right)<\infty
$$

for all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{1}{8\left({ }_{d-4} C_{l-1}-{ }_{d-4} C_{l-3}\right)} \widetilde{\varphi}(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Let $u=1 \in \mathcal{U}(A)$. Putting $x_{1}=x_{2}=x_{3}=x_{4}=x$ and $x_{5}=\cdots=x_{d}=0$ in (3.ii), we have

$$
\left\|f\left(\frac{x}{2}\right)-\frac{1}{2} f(x)\right\| \leq \frac{1}{16\left({ }_{d-4} C_{l-1}-d_{-4} C_{l-3}\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$. So we get

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{1}{8\left({ }_{d-4} C_{l-1}-{ }_{d-4} C_{l-3}\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 3.1.
Corollary 3.6. Let $r=4$. Let θ and $p>1$ be positive real numbers. Let $f: X \rightarrow Y$ be an odd mapping such that

$$
\left\|D_{u} f\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \sum_{j=1}^{d} \theta\left\|x_{j}\right\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{\theta}{\left(2^{p}-2\right)\left(d-4 C_{l-1}-d_{-4} C_{l-3}\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}\right)=\theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}$, and apply Theorem 3.5.

Theorem 3.7. Let $r=4$. Let $f: X \rightarrow Y$ be an odd mapping for which there is a function $\varphi: X^{d} \rightarrow[0, \infty)$ satisfying (3.ii) such that

$$
\widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x_{1}, \cdots, 2^{j} x_{d}\right)<\infty
$$

for all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{1}{8\left({ }_{d-4} C_{l-1}-{ }_{d-4} C_{l-3}\right)} \widetilde{\varphi}(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Let $u=1 \in \mathcal{U}(A)$. Putting $x_{1}=x_{2}=x_{3}=x_{4}=x$ and $x_{5}=\cdots=x_{d}=0$ in (3.ii), we have

$$
\left\|f\left(\frac{x}{2}\right)-\frac{1}{2} f(x)\right\| \leq \frac{1}{16\left({ }_{d-4} C_{l-1}-{ }_{d-4} C_{l-3}\right)} \varphi(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$. So we get

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{1}{16\left({ }_{d-4} C_{l-1}-{ }_{d-4} C_{l-3}\right)} \varphi(2 x, 2 x, 2 x, 2 x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 3.1.
Corollary 3.8. Let $r=4$. Let θ and $p<1$ be positive real numbers. Let $f: X \rightarrow Y$ be an odd mapping such that

$$
\left\|D_{u} f\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \sum_{j=1}^{d} \theta\left\|x_{j}\right\|^{p}
$$

for all $u \in \mathcal{U}(A)$ and all $x_{1}, \cdots, x_{d} \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \rightarrow Y$ such that

$$
\|f(x)-L(x)\| \leq \frac{\theta}{\left(2-2^{p}\right)\left(d-4 C_{l-1}-{ }_{d-4} C_{l-3}\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}\right)=\theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}$, and apply Theorem 3.7.

4. Isomorphisms in unital C^{*}-algebras

Throughout this section, assume that \mathcal{A} is a unital C^{*}-algebra with norm $\|\cdot\|$ and unit e, and that \mathcal{B} is a unital C^{*}-algebra with norm $\|\cdot\|$. Let $\mathcal{U}(\mathcal{A})$ be the set of unitary elements in \mathcal{A}.

We are going to investigate C^{*}-algebra isomorphisms between unital C^{*} algebras.

Theorem 4.1. Let $r=2$. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be an odd bijective mapping satisfying $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n=$ $0,1,2, \cdots$, for which there exists a function $\varphi: \mathcal{A}^{d} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}\left(x_{1}, \cdots, x_{d}\right):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x_{1}, \cdots, 2^{j} x_{d}\right)<\infty, \tag{4.i}\\
& \left\|D_{\mu} h\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{d}\right), \\
& \left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| \leq \varphi(\underbrace{2^{n} u, \cdots, 2^{n} u}_{d \text { times }}) \tag{4.ii}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$, all $u \in \mathcal{U}(\mathcal{A}), n=0,1,2, \cdots$, and all $x_{1}, \cdots, x_{d} \in \mathcal{A}$. Assume that (4.iii) $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} e\right)$ is invertible. Then the odd bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism.

Proof. Consider the C^{*}-algebras \mathcal{A} and \mathcal{B} as left Banach modules over the unital C^{*}-algebra \mathbb{C}. By Theorem 3.1, there exists a unique \mathbb{C}-linear generalized additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{gather*}
\|h(x)-H(x)\| \tag{4.iv}\\
\left.\leq \frac{1}{4\left({ }_{d-4} C_{l}-d-4\right.} C_{l-4}+1\right) \\
\varphi
\end{gather*}(x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text { times }})
$$

for all $x \in \mathcal{A}$. The generalized additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)
$$

for all $x \in \mathcal{A}$.

By (4.i) and (4.ii), we get

$$
\begin{aligned}
H\left(u^{*}\right) & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u^{*}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right)^{*} \\
& =\left(\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right)\right)^{*}=H(u)^{*}
\end{aligned}
$$

for all $u \in \mathcal{U}(\mathcal{A})$. Since H is \mathbb{C}-linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements (see [3, Theorem 4.1.7]), i.e., $x=$ $\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in \mathbb{C}, u_{j} \in \mathcal{U}(\mathcal{A})\right)$,

$$
\begin{aligned}
H\left(x^{*}\right) & =H\left(\sum_{j=1}^{m} \overline{\lambda_{j}} u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}^{*}\right)=\sum_{j=1}^{m} \overline{\lambda_{j}} H\left(u_{j}\right)^{*} \\
& =\left(\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right)\right)^{*}=H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right)^{*}=H(x)^{*}
\end{aligned}
$$

for all $x \in \mathcal{A}$.
Since $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n=$ $0,1,2, \cdots$,

$$
\begin{equation*}
H(u y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u y\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right) h(y)=H(u) h(y) \tag{4.1}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. By the additivity of H and (4.1),

$$
2^{n} H(u y)=H\left(2^{n} u y\right)=H\left(u\left(2^{n} y\right)\right)=H(u) h\left(2^{n} y\right)
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Hence

$$
\begin{equation*}
H(u y)=\frac{1}{2^{n}} H(u) h\left(2^{n} y\right)=H(u) \frac{1}{2^{n}} h\left(2^{n} y\right) \tag{4.2}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Taking the limit in (4.2) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u y)=H(u) H(y) \tag{4.3}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Since H is \mathbb{C}-linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements, i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in\right.$ $\left.\mathbb{C}, u_{j} \in \mathcal{U}(\mathcal{A})\right)$, it follows from (4.3) that

$$
\begin{aligned}
H(x y) & =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j} y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j} y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right) H(y) \\
& =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right) H(y)=H(x) H(y)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$.
By (4.1) and (4.3),

$$
H(e) H(y)=H(e y)=H(e) h(y)
$$

for all $y \in \mathcal{A}$. Since $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} e\right)=H(e)$ is invertible,

$$
H(y)=h(y)
$$

for all $y \in \mathcal{A}$.
Therefore, the odd bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism, as desired.

Corollary 4.2. Let $r=2$. Let θ and $p<1$ be positive real numbers. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be an odd bijective mapping satisfying $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n=0,1,2, \cdots$, such that

$$
\begin{aligned}
\left\|D_{\mu} h\left(x_{1}, \cdots, x_{d}\right)\right\| & \leq \theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}, \\
\left\|h\left(2^{n} u^{*}\right)-h\left(2^{n} u\right)^{*}\right\| & \leq d 2^{p n} \theta
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$, all $u \in \mathcal{U}(\mathcal{A}), n=0,1,2, \cdots$, and all $x_{1}, \cdots, x_{d} \in \mathcal{A}$. Assume that $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} e\right)$ is invertible. Then the odd bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism.

Proof. Define $\varphi\left(x_{1}, \cdots, x_{d}\right)=\theta \sum_{j=1}^{d}\left\|x_{j}\right\|^{p}$, and apply Theorem 4.1.
Theorem 4.3. Let $r=2$. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be an odd bijective mapping satisfying $h\left(2^{n} u y\right)=h\left(2^{n} u\right) h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n=$ $0,1,2, \cdots$, for which there exists a function $\varphi: \mathcal{A}^{d} \rightarrow[0, \infty)$ satisfying (4.i), (4.ii), and (4.iii) such that

$$
\begin{equation*}
\left\|D_{\mu} h\left(x_{1}, \cdots, x_{d}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{d}\right) \tag{4.v}
\end{equation*}
$$

for $\mu=1, i$, and all $x_{1}, \cdots, x_{d} \in \mathcal{A}$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, then the odd bijective mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a C^{*}-algebra isomorphism.

Proof. Put $\mu=1$ in (4.v). By the same reasoning as in the proof of Theorem 4.1, there exists a unique generalized additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$
satisfying (4.iv). By the same reasoning as in the proof of [5, Theorem], the generalized additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{R}-linear.

Put $\mu=i$ in (4.v). By the same method as in the proof of Theorem 4.1, one can obtain that

$$
H(i x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} i x\right)=\lim _{n \rightarrow \infty} \frac{i}{2^{n}} h\left(2^{n} x\right)=i H(x)
$$

for all $x \in \mathcal{A}$.
For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. So

$$
\begin{aligned}
H(\lambda x) & =H(s x+i t x)=s H(x)+t H(i x)=s H(x)+i t H(x) \\
& =(s+i t) H(x)=\lambda H(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{A}$. So

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{A}$. Hence the generalized additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear.

The rest of the proof is the same as in the proof of Theorem 4.1.

References

[1] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[2] R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
[4] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[6] _ On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (3) (1998), 89-124.
[7] , The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[8] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[9] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[10] Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[11] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

Department of Mathematics
University of Seoul
Seoul 130-743, Republic of Korea
E-mail: dyshin@uos.ac.kr
**
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

[^0]: Received February 17, 2011; Accepted November 18, 2011.
 2010 Mathematics Subject Classifications: Primary 39B52, 46L05, 47B48.
 Key words and phrases: Banach module over C^{*}-algebra, functional equation in d variables, Cauchy-Rassias stability, C^{*}-algebra isomorphism.

 Correspondence should be addressed to Choonkil Park, baak@hanyang.ac.kr.
 *Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

