CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C*-ALGEBRAS

DONG YUN SHIN* AND CHOONKIL PARK**

ABSTRACT. Let X, Y be vector spaces, and let r be 2 or 4. It is shown that if an odd mapping $f: X \to Y$ satisfies the functional equation

(‡)
$$rf(\frac{\sum_{j=1}^{d} x_{j}}{r}) + \sum_{\substack{\iota(j)=0,1\\\sum_{j=1}^{d} \iota(j)=l}} rf(\frac{\sum_{j=1}^{d} (-1)^{\iota(j)} x_{j}}{r})$$
$$= (d-1C_{l} - d-1C_{l-1} + 1) \sum_{j=1}^{d} f(x_{j})$$

then the odd mapping $f: X \to Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation (‡) in Banach modules over a unital C^* -algebra. As an application, we show that every almost linear bijection $h: \mathcal{A} \to \mathcal{B}$ of a unital C^* -algebra \mathcal{A} onto a unital C^* -algebra \mathcal{B} is a C^* -algebra isomorphism when $h(2^n uy) = h(2^n u)h(y)$ for all unitaries $u \in \mathcal{A}$, all $y \in \mathcal{A}$, and $n = 0, 1, 2, \cdots$.

1. Introduction

Let X and Y be Banach spaces with norms $|| \cdot ||$ and $|| \cdot ||$, respectively. Consider $f: X \to Y$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$$

Received February 17, 2011; Accepted November 18, 2011.

²⁰¹⁰ Mathematics Subject Classifications: Primary 39B52, 46L05, 47B48.

Key words and phrases: Banach module over C^* -algebra, functional equation in d variables, Cauchy-Rassias stability, C^* -algebra isomorphism.

Correspondence should be addressed to Choonkil Park, baak@hanyang.ac.kr.

^{*}Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

for all $x, y \in X$. Rassias [5] showed that there exists a unique \mathbb{R} -linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in X$. Găvruta [1] generalized the Rassias' result: Let G be an abelian group and Y a Banach space. Denote by $\varphi : G \times G \to [0, \infty)$ a function such that

$$\widetilde{\varphi}(x,y) = \sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j y) < \infty$$

for all $x, y \in G$. Suppose that $f : G \to Y$ is a mapping satisfying

$$\|f(x+y) - f(x) - f(y)\| \le \varphi(x,y)$$

for all $x, y \in G$. Then there exists a unique additive mapping $T : G \to Y$ such that

$$||f(x) - T(x)|| \le \frac{1}{2}\widetilde{\varphi}(x,x)$$

for all $x \in G$. C. Park [4] applied the Găvruta's result to linear functional equations in Banach modules over a C^* -algebra. Several functional equations have been investigated in [6]–[11].

Throughout this paper, assume that r is 2 or 4, and that d and l are integers with d > 1 and $1 < l < \frac{d}{2}$.

In this paper, we solve the following functional equation

(1.i)

$$rf(\frac{\sum_{j=1}^{d} x_{j}}{r}) + \sum_{\substack{\iota(j)=0,1\\\sum_{j=1}^{d} \iota(j)=l}} rf(\frac{\sum_{j=1}^{d} (-1)^{\iota(j)} x_{j}}{r})$$

$$= (d-1C_{l} - d-1C_{l-1} + 1) \sum_{j=1}^{d} f(x_{j}).$$

We moreover prove the Cauchy-Rassias stability of the functional equation (1.i) in Banach modules over a unital C^* -algebra. These results are applied to investigate C^* -algebra isomorphisms in unital C^* -algebras.

2. An odd functional equation in d variables

Throughout this section, assume that X and Y are real linear spaces.

LEMMA 2.1. If an odd mapping $f : X \to Y$ satisfies (1.i) for all $x_1, x_2, \cdots, x_d \in X$, then f is additive.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Putting $x_1 = x, x_2 = y$ and $x_3 = \cdots = x_d = 0$ in (1.i), we get

$$(2.1) \ (_{d-2}C_{l-d-2}C_{l-2}+1)rf(\frac{x+y}{r}) = (_{d-1}C_{l-1}C_{l-1}+1)(f(x)+f(y))$$

for all $x, y \in X$. Since $_{d-2}C_{l} - _{d-2}C_{l-2} + 1 =_{d-1} C_{l} - _{d-1}C_{l-1} + 1$,

$$rf(\frac{x+y}{r}) = f(x) + f(y)$$

for all $x, y \in X$. Letting y = 0 in (2.1), we get $rf(\frac{x}{r}) = f(x)$ for all $x \in X$. Hence

$$f(x+y) = rf(\frac{x+y}{r}) = f(x) + f(y)$$

for all $x, y \in X$. Thus f is additive.

3. Stability of an odd functional equation in Banach modules over a C^* -algebra

Throughout this section, assume that A is a unital C^* -algebra with norm $|\cdot|$ and unitary group $\mathcal{U}(A)$, and that X and Y are left Banach modules over a unital C^* -algebra A with norms $||\cdot||$ and $||\cdot||$, respectively.

Given a mapping $f: X \to Y$, we set

$$D_u f(x_1, \cdots, x_d) := rf(\frac{\sum_{j=1}^d ux_j}{r}) + \sum_{\substack{\iota(j)=0,1\\\sum_{j=1}^d \iota(j)=l}} rf(\frac{\sum_{j=1}^d (-1)^{\iota(j)}ux_j}{r}) - (d_{-1}C_l - d_{-1}C_{l-1} + 1)\sum_{j=1}^d uf(x_j)$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \cdots, x_d \in X$.

THEOREM 3.1. Let r = 2 and d > 4. Let $f : X \to Y$ be an odd mapping for which there is a function $\varphi : X^d \to [0, \infty)$ such that

(3.i)
$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x_1,\cdots,2^j x_d) < \infty,$$

(3.ii)
$$||D_u f(x_1, \cdots, x_d)|| \le \varphi(x_1, \cdots, x_d)$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

(3.iii)
$$||f(x) - L(x)|| \le \frac{1}{4(d-4C_l - d-4C_{l-4} + 1)}\widetilde{\varphi}(x, x, x, x, x, x, 0, \dots, 0) - \frac{1}{d-4 \text{ times}}$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Let $u = 1 \in \mathcal{U}(A)$. Putting $x_1 = x_2 = x_3 = x_4 = x$ and $x_5 = \cdots = x_d = 0$ in (3.ii), we have

$$\|f(2x) - 2f(x)\| \le \frac{1}{2(d-4C_l - d-4C_{l-4} + 1)}\varphi(x, x, x, x, x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$. So we get

$$\|f(x) - \frac{1}{2}f(2x)\| \le \frac{1}{4(d-4C_l - d-4C_{l-4} + 1)}\varphi(x, x, x, x, x, \frac{0, \dots, 0}{d-4 \text{ times}})$$

for all $x \in X$. Hence

(3.1)
$$\|\frac{1}{2^n}f(2^nx) - \frac{1}{2^{n+1}}f(2^{n+1}x)\|$$

$$\leq \frac{1}{2^{n+2}(d-4C_l - d-4C_{l-4} + 1)}\varphi(2^nx, 2^nx, 2^nx, 2^nx, 0, \dots, 0)$$

$$d-4 \text{ times}$$

for all $x \in X$ and all positive integers n. By (3.1), we have

(3.2)
$$\|\frac{1}{2^m}f(2^mx) - \frac{1}{2^n}f(2^nx)\|$$

Generalized additive mapping in Banach modules

$$\leq \sum_{k=m}^{n-1} \frac{1}{2^{k+2} (d-4C_l - d-4C_{l-4} + 1)} \varphi(2^k x, 2^k x, 2^k x, 2^k x, 2^k x, 0, \cdots, 0)$$

for all $x \in X$ and all positive integers m and n with m < n. This shows that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Yis complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges for all $x \in X$. So we can define a mapping $L: X \to Y$ by

$$L(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Since f(-x) = -f(x) for all $x \in X$, we have L(-x) = L(x) for all $x \in X$. Also, we get

$$||D_1 L(x_1, \cdots, x_d)|| = \lim_{n \to \infty} \frac{1}{2^n} ||D_1 f(2^n x_1, \cdots, 2^n x_d)||$$

$$\leq \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n x_1, \cdots, 2^n x_d) = 0$$

for all $x_1, \dots, x_d \in X$. So L is a generalized additive mapping. Putting m = 0 and letting $n \to \infty$ in (3.2), we get (3.iii).

Now, let $L': X \to Y$ be another generalized additive mapping satisfying (3.iii). By Lemma 2.1, L and L' are additive. So we have

$$\begin{split} \|L(x) - L'(x)\| &= \frac{1}{2^n} \|L(2^n x) - L'(2^n x)\| \\ &\leq \frac{1}{2^n} (\|L(2^n x) - f(2^n x)\| + \|L'(2^n x) - f(2^n x)\|) \\ &\leq \frac{2}{2^{n+2} (d-4C_l - d-4C_{l-4} + 1)} \widetilde{\varphi}(2^n x, 2^n x, 2^n x, 2^n x, \underbrace{0, \cdots, 0}_{d-4 \text{ times}}), \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that L(x) = L'(x) for all $x \in X$. This proves the uniqueness of L.

By the assumption, for each $u \in \mathcal{U}(A)$, we get

$$\|D_u L(x, \underbrace{0, \cdots, 0}_{d-1 \text{ times}})\| = \lim_{n \to \infty} \frac{1}{2^n} \|D_u f(2^n x, \underbrace{0, \cdots, 0}_{d-1 \text{ times}})\|$$
$$\leq \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n x, \underbrace{0, \cdots, 0}_{d-1 \text{ times}}) = 0$$

for all $x \in X$. So

$$2(_{d-1}C_l - _{d-1}C_{l-1} + 1)L(\frac{ux}{2}) = (_{d-1}C_l - _{d-1}C_{l-1} + 1)uL(x)$$

for all $u \in \mathcal{U}(A)$ and all $x \in X$. Since L is additive,

(3.3)
$$L(ux) = 2L(\frac{ux}{2}) = uL(x)$$

for all $u \in \mathcal{U}(A)$ and all $x \in X$.

Now let $a \in A$ $(a \neq 0)$ and M an integer greater than 4|a|. Then $|\frac{a}{M}| < \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3}$. By [2, Theorem 1], there exist three elements $u_1, u_2, u_3 \in \mathcal{U}(A)$ such that $3\frac{a}{M} = u_1 + u_2 + u_3$. So by (3.3)

$$\begin{split} L(ax) &= L(\frac{M}{3} \cdot 3\frac{a}{M}x) = M \cdot L(\frac{1}{3} \cdot 3\frac{a}{M}x) = \frac{M}{3}L(3\frac{a}{M}x) \\ &= \frac{M}{3}L(u_1x + u_2x + u_3x) = \frac{M}{3}(L(u_1x) + L(u_2x) + L(u_3x)) \\ &= \frac{M}{3}(u_1 + u_2 + u_3)L(x) = \frac{M}{3} \cdot 3\frac{a}{M}L(x) \\ &= aL(x) \end{split}$$

for all $a \in A$ and all $x \in X$. Hence

$$L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)$$

for all $a, b \in A(a, b \neq 0)$ and all $x, y \in X$. And L(0x) = 0 = 0L(x) for all $x \in X$. So the unique generalized additive mapping $L : X \to Y$ is an A-linear mapping.

COROLLARY 3.2. Let r = 2. Let θ and p < 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$||D_u f(x_1, \cdots, x_d)|| \le \theta \sum_{j=1}^d ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{2\theta}{(2 - 2^p)(d - 4C_l - d - 4C_{l-4} - 1)} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta \sum_{j=1}^d ||x_j||^p$, and apply Theorem 3.1. \Box

THEOREM 3.3. Let r = 2. Let $f : X \to Y$ be an odd mapping for which there is a function $\varphi : X^d \to [0, \infty)$ satisfying (3.ii) such that

$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=1}^{\infty} 2^j \varphi(\frac{x_1}{2^j},\cdots,\frac{x_d}{2^j}) < \infty$$

for all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$\|f(x) - L(x)\| \le \frac{1}{4(d-4C_l - d-4C_{l-4} + 1)} \widetilde{\varphi}(x, x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text{ times}})$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Let $u = 1 \in \mathcal{U}(A)$. Putting $x_1 = x_2 = x_3 = x_4 = x$ and $x_5 = \cdots = x_d = 0$ in (3.ii), we have

$$\|f(2x) - 2f(x)\| \le \frac{1}{2(d-4C_l - d-4C_{l-4} + 1)}\varphi(x, x, x, x, x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$. So we get

$$\|f(x) - 2f(\frac{x}{2})\| \le \frac{1}{2(d-4C_l - d-4C_{l-4} + 1)}\varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 3.1.

COROLLARY 3.4. Let r = 2. Let θ and p > 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$\|D_u f(x_1, \cdots, x_d)\| \le \sum_{j=1}^a \theta ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{2\theta}{(2^p - 2)(d - 4C_l - d - 4C_{l-4} - 1)} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta \sum_{j=1}^d ||x_j||^p$, and apply Theorem 3.3. \Box

THEOREM 3.5. Let r = 4. Let $f : X \to Y$ be an odd mapping for which there is a function $\varphi : X^d \to [0, \infty)$ satisfying (3.ii) such that

$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=1}^{\infty} 2^j \varphi(\frac{x_1}{2^j},\cdots,\frac{x_d}{2^j}) < \infty$$

for all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$\|f(x) - L(x)\| \le \frac{1}{8(d-4C_{l-1} - d-4C_{l-3})} \widetilde{\varphi}(x, x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text{ times}})$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Let $u = 1 \in \mathcal{U}(A)$. Putting $x_1 = x_2 = x_3 = x_4 = x$ and $x_5 = \cdots = x_d = 0$ in (3.ii), we have

$$\|f(\frac{x}{2}) - \frac{1}{2}f(x)\| \le \frac{1}{16(d-4C_{l-1} - d-4C_{l-3})}\varphi(x, x, x, x, x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$. So we get

$$\|f(x) - 2f(\frac{x}{2})\| \le \frac{1}{8(d-4C_{l-1} - d-4C_{l-3})}\varphi(x, x, x, x, x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 3.1.

COROLLARY 3.6. Let r = 4. Let θ and p > 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$||D_u f(x_1, \cdots, x_d)|| \le \sum_{j=1}^d \theta ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{\theta}{(2^p - 2)(d - 4C_{l-1} - d - 4C_{l-3})} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta \sum_{j=1}^d ||x_j||^p$, and apply Theorem 3.5. \Box

624

THEOREM 3.7. Let r = 4. Let $f : X \to Y$ be an odd mapping for which there is a function $\varphi : X^d \to [0, \infty)$ satisfying (3.ii) such that

$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x_1,\cdots,2^j x_d) < \infty$$

for all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$\|f(x) - L(x)\| \le \frac{1}{8(d-4C_{l-1} - d-4C_{l-3})} \widetilde{\varphi}(x, x, x, x, x, \underbrace{0, \cdots, 0}_{d-4 \text{ times}})$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Let $u = 1 \in \mathcal{U}(A)$. Putting $x_1 = x_2 = x_3 = x_4 = x$ and $x_5 = \cdots = x_d = 0$ in (3.ii), we have

$$\|f(\frac{x}{2}) - \frac{1}{2}f(x)\| \le \frac{1}{16(d-4C_{l-1} - d-4C_{l-3})}\varphi(x, x, x, x, x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$. So we get

$$\|f(x) - \frac{1}{2}f(2x)\| \le \frac{1}{16(d-4C_{l-1} - d-4C_{l-3})}\varphi(2x, 2x, 2x, 2x, 2x, \frac{0, \cdots, 0}{d-4 \text{ times}})$$

for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 3.1.

COROLLARY 3.8. Let r = 4. Let θ and p < 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$\|D_u f(x_1, \cdots, x_d)\| \le \sum_{j=1}^a \theta ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_d \in X$. Then there exists a unique A-linear generalized additive mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{\theta}{(2 - 2^p)(_{d-4}C_{l-1} - _{d-4}C_{l-3})} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta \sum_{j=1}^d ||x_j||^p$, and apply Theorem 3.7. \Box

4. Isomorphisms in unital C*-algebras

Throughout this section, assume that \mathcal{A} is a unital C^* -algebra with norm $||\cdot||$ and unit e, and that \mathcal{B} is a unital C^* -algebra with norm $||\cdot||$. Let $\mathcal{U}(\mathcal{A})$ be the set of unitary elements in \mathcal{A} .

We are going to investigate C^* -algebra isomorphisms between unital C^* -algebras.

THEOREM 4.1. Let r = 2. Let $h : \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h(2^n uy) = h(2^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n = 0, 1, 2, \cdots$, for which there exists a function $\varphi : \mathcal{A}^d \to [0, \infty)$ such that

(4.i)
$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x_1,\cdots,2^j x_d) < \infty,$$

(4.ii)
$$\|D_{\mu}h(x_{1},\cdots,x_{d})\| \leq \varphi(x_{1},\cdots,x_{d}), \\ \|h(2^{n}u^{*}) - h(2^{n}u)^{*}\| \leq \varphi(\underbrace{2^{n}u,\cdots,2^{n}u}_{d \text{ times}})$$

for all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$, all $u \in \mathcal{U}(\mathcal{A})$, $n = 0, 1, 2, \cdots$, and all $x_1, \cdots, x_d \in \mathcal{A}$. Assume that (4.iii) $\lim_{n \to \infty} \frac{1}{2^n} h(2^n e)$ is invertible. Then the odd bijective mapping $h : \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. Consider the C^* -algebras \mathcal{A} and \mathcal{B} as left Banach modules over the unital C^* -algebra \mathbb{C} . By Theorem 3.1, there exists a unique \mathbb{C} -linear generalized additive mapping $H : \mathcal{A} \to \mathcal{B}$ such that

(4.iv)
$$||h(x) - H(x)||$$

$$\leq \frac{1}{4(d-4C_l - d-4C_{l-4} + 1)} \widetilde{\varphi}(x, x, x, x, x, 0, \dots, 0)$$

for all $x \in \mathcal{A}$. The generalized additive mapping $H : \mathcal{A} \to \mathcal{B}$ is given by

$$H(x) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n x)$$

for all $x \in \mathcal{A}$.

By (4.i) and (4.ii), we get

$$H(u^*) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n u^*) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n u)^*$$
$$= (\lim_{n \to \infty} \frac{1}{2^n} h(2^n u))^* = H(u)^*$$

for all $u \in \mathcal{U}(\mathcal{A})$. Since H is \mathbb{C} -linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements (see [3, Theorem 4.1.7]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{A})$),

$$H(x^*) = H(\sum_{j=1}^m \overline{\lambda_j} u_j^*) = \sum_{j=1}^m \overline{\lambda_j} H(u_j^*) = \sum_{j=1}^m \overline{\lambda_j} H(u_j)^*$$
$$= (\sum_{j=1}^m \lambda_j H(u_j))^* = H(\sum_{j=1}^m \lambda_j u_j)^* = H(x)^*$$

for all $x \in \mathcal{A}$.

Since $h(2^n uy) = h(2^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n = 0, 1, 2, \cdots$,

(4.1)
$$H(uy) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n uy) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n u) h(y) = H(u) h(y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. By the additivity of H and (4.1),

$$2^{n}H(uy) = H(2^{n}uy) = H(u(2^{n}y)) = H(u)h(2^{n}y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Hence

(4.2)
$$H(uy) = \frac{1}{2^n} H(u)h(2^n y) = H(u)\frac{1}{2^n}h(2^n y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Taking the limit in (4.2) as $n \to \infty$, we obtain

(4.3)
$$H(uy) = H(u)H(y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Since H is \mathbb{C} -linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements, i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{A})$), it follows from (4.3) that

$$H(xy) = H(\sum_{j=1}^{m} \lambda_j u_j y) = \sum_{j=1}^{m} \lambda_j H(u_j y) = \sum_{j=1}^{m} \lambda_j H(u_j) H(y)$$
$$= H(\sum_{j=1}^{m} \lambda_j u_j) H(y) = H(x) H(y)$$

Dong Yun Shin and Choonkil Park

for all $x, y \in \mathcal{A}$.

By (4.1) and (4.3),

$$H(e)H(y) = H(ey) = H(e)h(y)$$

for all $y \in \mathcal{A}$. Since $\lim_{n \to \infty} \frac{1}{2^n} h(2^n e) = H(e)$ is invertible,

$$H(y) = h(y)$$

for all $y \in \mathcal{A}$.

Therefore, the odd bijective mapping $h : \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism, as desired.

COROLLARY 4.2. Let r = 2. Let θ and p < 1 be positive real numbers. Let $h : \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h(2^n uy) = h(2^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n = 0, 1, 2, \cdots$, such that

$$\|D_{\mu}h(x_1, \cdots, x_d)\| \le \theta \sum_{j=1}^{a} ||x_j||^p,$$
$$\|h(2^n u^*) - h(2^n u)^*\| \le d \ 2^{pn}\theta$$

for all $\mu \in \mathbb{T}^1$, all $u \in \mathcal{U}(\mathcal{A})$, $n = 0, 1, 2, \cdots$, and all $x_1, \cdots, x_d \in \mathcal{A}$. Assume that $\lim_{n\to\infty} \frac{1}{2^n} h(2^n e)$ is invertible. Then the odd bijective mapping $h: \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta \sum_{j=1}^d ||x_j||^p$, and apply Theorem 4.1. \Box

THEOREM 4.3. Let r = 2. Let $h : \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h(2^n uy) = h(2^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n = 0, 1, 2, \cdots$, for which there exists a function $\varphi : \mathcal{A}^d \to [0, \infty)$ satisfying (4.i), (4.ii), and (4.iii) such that

(4.v)
$$||D_{\mu}h(x_1,\cdots,x_d)|| \le \varphi(x_1,\cdots,x_d)$$

for $\mu = 1, i$, and all $x_1, \dots, x_d \in \mathcal{A}$. If h(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, then the odd bijective mapping $h : \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. Put $\mu = 1$ in (4.v). By the same reasoning as in the proof of Theorem 4.1, there exists a unique generalized additive mapping $H : \mathcal{A} \to \mathcal{B}$

satisfying (4.iv). By the same reasoning as in the proof of [5, Theorem], the generalized additive mapping $H : \mathcal{A} \to \mathcal{B}$ is \mathbb{R} -linear.

Put $\mu = i$ in (4.v). By the same method as in the proof of Theorem 4.1, one can obtain that

$$H(ix) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n ix) = \lim_{n \to \infty} \frac{i}{2^n} h(2^n x) = iH(x)$$

for all $x \in \mathcal{A}$.

For each element $\lambda \in \mathbb{C}$, $\lambda = s + it$, where $s, t \in \mathbb{R}$. So

$$H(\lambda x) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)$$
$$= (s + it)H(x) = \lambda H(x)$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{A}$. So

$$H(\zeta x + \eta y) = H(\zeta x) + H(\eta y) = \zeta H(x) + \eta H(y)$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{A}$. Hence the generalized additive mapping $H : \mathcal{A} \to \mathcal{B}$ is \mathbb{C} -linear.

The rest of the proof is the same as in the proof of Theorem 4.1. \Box

References

- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [2] R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249–266.
- [3] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
- [4] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711–720.
- [5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [6] _____, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (3) (1998), 89–124.
- [7] _____, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352–378.
- [8] _____, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.
- [9] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338.

[10] Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253.
[11] S. M. Llarg, Bracklang in Madam Mathematica, Wilay, Nach 1960.

[11] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

*

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SEOUL SEOUL 130-743, REPUBLIC OF KOREA

E-mail: dyshin@uos.ac.kr

**

DEPARTMENT OF MATHEMATICS HANYANG UNIVERSITY SEOUL 133-791, REPUBLIC OF KOREA

E-mail: baak@hanyang.ac.kr