• Title/Summary/Keyword: H$_2$ controller

Search Result 452, Processing Time 0.028 seconds

LMI-Based Controller Design of Pneumatic Cylinder (LMI를 이용한 공기압 실린더의 상태제어기 설계)

  • Jang, J.S.;Ji, J.W.;Kim, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Pneumatic driving systems have hard non-linear characteristic and large friction force compared with driving power. Hence, it cannot be robust against parameter uncertainties, modelling error, disturbance and noise. In this study, we apply a mixed $H_2/H_{\infty}$ control to the generalized plant for a pneumatic driving apparatus system including parameter uncertainty and disturbance. In order to design the $H_2/H_{\infty}$ controller, we use the LMI technique. To evaluate control performance and robust stability of the designed controller, we compare it with a conventional controller such as PVA(Position-Velocity-Acceleration state controller) using the simulation results. As a result, it can be known that designed controller shows better robust stability than the conventional controller.

  • PDF

Fuzzy H2H Controller Design for Delayed Nonlinear Systems (시간지연을 갖는 비선형 시스템의 퍼지 H2H 제어기 설계)

  • Jo, Hui-Su;Lee, Gap-Rae;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.578-583
    • /
    • 2002
  • This paper presents a method for designing fuzzy $H_2/H_{\infty}$ controllers of nonlinear systems with time varying delay. Takagi-Sugeno fuzzy model is employed to represent nonlinear systems with time varying delay. Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMls). The proposed fuzzy $H_2/H_{\infty}$ controllers minimizes the upper bound on the linear quadratic performance measure.

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua;Deng, Feiqi;Wan, Anhua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.699-717
    • /
    • 2012
  • In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Performance of LQR and H$_2$ Controller for an Experimentally-Identified Structure with AMD (AMD가 설치된 실험모델에 대한 LQR과 H$_2$제어기의 설계 및 성능비교)

  • 민경원;이승준;주석준;김홍진;박민규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.461-470
    • /
    • 2003
  • This paper discusses a time domain controller, LQR, and a frequency domain controller, H₂, for optimal control of civil structures under seismic loads. Numerical simulations are performed on a three-story structure with Active Mass Driver (AMD), which is experimentally identified. Control effectiveness of each controller for the suppression of third floor acceleration responses is investigated when the similar maximum control force is used. Simulation results indicate that LQR is effective for acceleration response reduction while H₂ controller is efficient for utilizing control force.

  • PDF

A Study on State Space H2H Controller Using Sliding Mode (슬라이딩 모드를 이용한 상태공간 H2H 제어기에 관한 연구)

  • 김민찬;박승규;안호균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.868-873
    • /
    • 2003
  • $H_{\infty}$ control has been applied to the design of practical control systems widely because of its robustness. It can minimize $H_{\infty}$ norm of the transfer function between the desired output and the disturbances. The SMC(Sliding Mode Control) is more robust and give the better performance than the $H_{\infty}$ control if the matching condition is satisfied. A controller which can have the advantages of $H_{\infty}$ control and the SMC is proposed to add the robustness of the SMC to the $H_{\infty}$ controller. Its design is based on the augmented system of which dynamics have one higher order than that of the original system and has the same dynamic as the desired system in spite of uncertainties. The dynamic of proposed sliding surface is the same dynamic as the system controlled by $H_{\infty}$ controller without the uncertainties which satisfy the matching condition.

Robust Controller Design by $\textrm{H}_\infty$ Method for a Launch Vehicle ($\textrm{H}_\infty$ 기법에 의한 발사체의 견실한 제어기 설계)

  • 이군석;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.463-468
    • /
    • 1992
  • In this paper, discrete-time H$_{\infty}$ controller design in .delta.- domaion using Normalized Coprime Factor plant description is proposed and the loop-shaping method developed by Mcfalane[2], which is known to be very simple and systematic method, is adopted here in H$_{\infty}$ controller design. In particular, we show that .delta.- H$_{\infty}$ controller proposed here is a unified form for the continuous and discrete-time cases.es.

  • PDF

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

Design of Two-Degree-of-Freedom PI Controllers using the Mixed $H_2/H_{\infty}$ Methods ($H_2 / H_{\infty}$ 혼합 기법을 이용한 2자유도 PI 제어기의 설계)

  • 조용석;박기헌
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.12-22
    • /
    • 1996
  • A numerous designs of PI controllers have been suggested to solve out trade-off between tracing and regulating problems. We constructed the PI controller system with two-degree-of-freedom that is more analytic and a better approach to a practical one. In the conventional H$_{2}$ design of optimal PI controllers, the cost function includes only the plant output terms due to the divergent problems. Since the platn input temr is not considered in PI controller design, occasionally, the plant input thends to be either very large or saturated. To solve the prior mentioned problems, we employed a mixed $H_2/H_{\infty}$ method that combines the H$_{2}$ design method to decide optimal parameters of PI controller and the $H_2/H_{\infty}$ design method to minimize the maximum amplitude of plant input. The calculation time of the H$_{infty}$ norm was considerably reduced by the simple scalar function obtained by the wiener-hopf factorization of non-scalar functions.

  • PDF

Descriptor and Non-Descriptor Controllers in Mixed $H_2/H_{\infty}$ Control of Descriptor Systems

  • Choe, Yeon-Wook;Ahn, Young-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.892-897
    • /
    • 2003
  • This paper considers the design of mixed $H_2/\;H_{\infty}$ controllers for linear time-invariant descriptor systems. Firstly, an $H_{\infty}$ and $H_2$ synthesis problem for a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, the existence of a mixed $H_2/\;H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_{\infty}$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables. In addition, we show the procedure by which a obtained descriptor controller can be transformed to a non-descriptor one.

  • PDF

Mixed $H_2$/$H_{\infty}$ Output Feedback Controller Design for Time-Delayed System (시간지연 시스템에 대한 혼합 $H_2$/$H_{\infty}$ 출력궤환 제어기 설계)

  • 양혜진;김종해;조용철;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.331-331
    • /
    • 2000
  • This paper presents the mixed $H_2/H_{\infty}$ output feedback controIler design method for linear systems with delayed state. The objective is to design the output feedback controller which minimizes the H$_2$-norm of one transfer function while ensuring the H$_{\infty}$-norm of the other is held below a chosen level. When objective is tormulated in terms of a common Lyapunov function, the sufficient conditions of existence of mixed $H_2/H_{\infty}$ controller are given in terms of LMIs. terms of LMIs.

  • PDF