• Title/Summary/Keyword: H$_\infty$ Control Theory

Search Result 126, Processing Time 0.023 seconds

The hovering Flight Attitude Control of a Helicopter using Mixed $H_2/H_{\infty}$ Control Techniques ($H_2/H_{\infty}$ 혼합 제어 기법을 이용한 헬리콥터의 정지 비행 자세 제어에 관한 연구)

  • Lee, Myung-Wook;Ko, Kang-Woong;Min, Deuk-Gi;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2599-2601
    • /
    • 2000
  • A helicopter control problem has been researched with many control theory. Especially, study of the hovering flight attitude control of a helicopter has been brisked since 60s with multivariable control theory. In this paper, the modeling is interpreted through the 6-freedom equation. To getting a entire equation, species of parameters and charts are adapted. The $H_2/H_{\infty}$ controller is acquired by mixing the $H_2$ control theory and the $H_{\infty}$ control theory. The $H_2$ control theory is reasonable one to increase the performance of a plant, and the $H_{\infty}$ control theory secures the robust stability. The simulation shows that the helicopter system is being controlled while maintaining performance and robust stability against perturbation.

  • PDF

Vibration Control of Multi-Degree-of-Freedem Structure by Nonlinear TEX>$H_\infty$ Control

  • Kubota, Kenta;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.354-358
    • /
    • 1994
  • This study is concerned with H$_{\infty}$ control theory of nonlinear systems. Recently H$_{\infty}$ control theory has been developed to nonlinear systems, and especially nonlinear H$_{\infty}$ control theory based on the Hamilton-Jacobi inequality has been proposed. This corresponds to linear H$_{\infty}$ control theory based on the Riccati equation. In this paper, we apply it to a semi-active dynamic vibration absorber for multi-degree-of-freedom structure, and we design its state feedback controller via the Riccati equation. In the simulation, we show that it is effective for a vibration control.rol.

  • PDF

Robust Positioning Control of a Flexible beam using $H_2/H_{\infty}$ and $\mu$-theory ($H_2$/H$\infty$$\mu$이론을 이용한 유연 빔의 위치제어)

  • 최연욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using mixed $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally. Next, a robust controller is designed based on the mixed $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to mixed $H_2/H_{\infty}$ control and $\mu$-theory. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

A Design of Robust Vibration Control System for a Four-story Shear Structure (4층 층상 구조물에 대한 강인한 진동 제어 시스템 설계)

  • Yang, J.H.;Jeong, H.H.;Jeong, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.60-67
    • /
    • 2003
  • This paper introduces basic study how to restrain the vibration of a four story shear structure. We have modeled a four story shear structure mathematically and have identified each parameters by experiment. We have gotten a reduced nominal model through modal analyzing method and the $H_{\infty}$ control theory is used in the control system design to get the robust controller. It's shown that the desirable performances is confirmed through the mathematical simulation. And a designed controller applying the $H_{\infty}$ control theory shows the good performance for the impulse disturbance through the simulation results. That is, the robustness of this control system is confirmed for the ability of disturbance rejection and modeling error.

  • PDF

Robust Positioning Control of a Flexible beam using $H_2/H_\infty$ and $\mu$ theory ($H_2/H_\infty$$\mu$ 이론을 이용한 유연 빔의 위치제어)

  • 최연욱;이형기
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.133-136
    • /
    • 2000
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally Next, a robust controller is designed based on the $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to $H_2/H_{\infty}$ control. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF

Structural Vibration Control with $H_{\infty}$ Control Algorithm ($H_{\infty}$제어알고리즘을 이용한 구조물의 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.93-99
    • /
    • 1998
  • Mathematical model can be obtained by physical law or engineering theory. However it is always incomplete expression of the real system. In active controls to suppress vibration due to earthquake or wind load, modeling errors can often cause the problems of instability and performance degradation. In this paper, robust optimal controller design method using H$\infty$ control theory is developed for the systems which have uncertain natural frequency and design constraints. Numerical results show that the proposed H$\infty$ controller can avoid the performance degradation due to several errors and has better performance than conventional LQR method.

  • PDF

A Vibration Control of Multi-layer Structure by LQ Type $H_{\infty}$ Control Theory (LQ 형 $H_{\infty}$ 제어기법에 의한 다층 구조물의 진동제어)

  • Yang, J.H.;Jeong, H.J.;Kim, C.H.;Byun, J.H.;Sim, S.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.41-46
    • /
    • 1998
  • This paper presents the vibration control for the two degree-of-freedom which is a reduced model of multi-layer structure. This reduced model is designed for the first and second order resonance in the low frequency domain where the disturbance such as the earth quake has the large energy. And a designed controller using the LQ type $H_{\infty}$ control theory shows the good performance for the impulse disturbance through the experimental results and the simulation results respectively.

  • PDF

Precise Positioning $H_\infty$ Control Considering Resonance and Coulomb Friction

  • Yamauchi, A.;Mikami, Y.;Moran, A.;Hayase, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.512-517
    • /
    • 1994
  • The control system of a precise positioning mechanism with resonance and Coulomb friction has been designed using H$_{\infty}$ control theory, and the control performance has been verified by computer simulation and experimental analysis. The DGKF type H$_{\infty}$ control theory with scalar weighting factors was utilized for designing the control system. The followings have been confirmed from the present study: (1) The system with H$_{\infty}$ control presents better convergence and stability than the system with conventional control (PI-notch filter control). (2) The H$_{\infty}$ control system have good robustness properties for a wide range of operating conditions in the presence of external disturbances such as Coulomb friction and changing mechanical resonant frequency.ncy.

  • PDF

Force Tracking Control of a Small-Sized SMA Gripper H$_\infty$ Synthesis (H$_\infty$ 제어기법을 적용한 소형 SMA 그립퍼의 힘 추적 제어)

  • 한영민;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.391-395
    • /
    • 1996
  • This paper presents a robust force tracking control of a small-sized SMA gripper with two fingers using shape memory alloy(SMA) actuators. The mathematical governing equation of the proposed system is derived by Hamilton's principle and Lagrangian equation and then, the control system model is integrated with the first-order actuator dynamics. Uncertain system parameters such as time constant of the actuators are also included in the control model. A robust two degree of freedom(TDF) controller using H$_{\infty}$ control theory, which has inherent robustness to model uncertainties and external disturbances, is adopted to achieve end-point force tracking control of the two-finger gripper. Force tracking control performances for desired trajectories represented by sinusoidal and step functions are evaluated by undertaking both simulation and experimental works.

  • PDF