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Abstract

The control systcm of a precise positioning mechanism
with resonance and Coulomb friction has been designed using
He control theory, and the control performance has been
verilicd by computer simulation and cxperimental analysis.
The DGKF typec He control theory with scalar weighting
factors was ulilized for designing the control system.

The followings have been confirmed from the present study:
(1) The system with He control presents belter convergence

and stability than the system with conventional control

(PI-notch filter control).
(2) The He control system have good robustncss properlics

for a widc range of opcrating conditions in the presence of
cxlcrnal disturbances such as Coulomb friction and changing
mechanical resonant frequency.

1. Introduction

A precisc positioning system considering mechanical
resonance and Coulomb friction has been designed on the
basis of He control thcory. Positioning control is being
studicd actively in many manufacturing ficlds in order to
improvc the accuracy and performance of manufacturing
process. Certain behavior is desirable in positioning control
syslems—fast convergence, small stcady state crror, and
robustness arc desirable propertics of positioning control
systcms opcrating under the presence of external disturbances
such as Coulomb friction and changes in the system
paramcters,

Stcady state crror performance can not be directly taken into
considcration in DGKF ljpc He control thcory. Solid friction,
which cxists in most of positioning mcchanisms, disturbs the
control characleristics and ncgatively affccts the precision and
accuracy of the system. It is therefore cssential to usc a
Type-1 compensator since lasting disturbances such as
friction arc always present in positioning control.

The {ollowing points were considered for designing the
compensator analyzed in this paper:

(1) He control theory is utilized to design a control system
with the desired convergence and robustness propertics.

(2) In order to suppress the ncgative cffects of Coulomb
friction, it was modcled as onc of the disturbances of the
He control system.

(3) The frequency and step responses of the positioning
conltrol system werc analyzed theorctically and
cxperimentally. The experimental step response was
obtaincd considering milimeler-order translations and a
mcchanical resonant frequency of § Hz. These valucs were
sclected to perform the cxperimental analysis with case and

to study thc feasibiiity of compensating for the cffccts of
Coulomb friction and changes in the systcm and its
cnvironment.

2. Experimental system

Figure 1 shows the fundamental structure of the vibrational
maodel of the precise positioning mechanism[1]. A DC motor
rolates a baliscrew, and the ballscrew actuates a positioning
stage which has longitudinal motion. There arc friction forces
and friction torque affecting the DC motor and the positioning
stage, respectively. Figure 2 shows the experimental sclup.

A DC motor rotates according 1o a control voltage, turns a
ballscrew to lincarly move a sub-stage attached to the main
stage through two plate springs.

The DC motor and ballscrew had friction 1orque, and the
sub-stage is affected by friction forces. The friction at the
sub-stage could be varied. According to the diffcrence
between the present position of the sub~stage and the desired
position, a control voltage Vi is calculated by a computer and
send to a powcer amplificr to control the DC motor.
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Fig. 1 Vibrational modcl of positioning mechanism
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Fig. 2 Expcrimental system

3. Modeling and Identification
J-1. Motion equations

‘The motion cquations of the clectrical system in the DC
motor and amplificr can be described as follows :
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Fig. 3 Block diagram of positioning system

KpaV = K."Od, = Ri c- @

The above cquation neglects the inductance of DC motor to
simplify the controller design.

The rotational motion cquations of the drive mechanism can
be described as follows :

10 do e
T Ty =Te=J" 4’,”(., o, @

where Tt is the Coulomb friction torque which nonlincarly
depends on 40/dt as shown in Figure 4.

Tr (Nm)
Tro -
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~T¢go.

Fig. 4 Modcling of Coulomb friction torque

To is an cquivalent torque representing the cffcct of the
rotational mation of the main stage and is equal 1o :
(xm =Xt ) KpKa
The lincar motion cquations of the sub-stage can be
described as follows :

(xm=0) Kp=Ff = MAX/ o 4 Kel Ay, Rye)
The detectable output is :
y = Kea @

where Kb is the gain of the lascr sensor.
Figure 3 shows the block diagram of the complete positioning
mechanism bascd on cquations @ to @.

Table 1 shows the specification of paramecters and
nomenclature.

Table 1 List of individual paramctcrs

Kpa|Power amplifier gain 10

Ra |DC motor resistance 1.1 ohm
Kt {DC motor torque constant 0.0573 Nm/A
Ke |Back electromotive force const | 0.0567 Vs/rad
J |Moment of inertia 0.0453 g

Rotational damoing factor (0.0045) kgm /s
Kbs|(Ballscrew transducing coefficien(0.00151) m/rad

| |[Lead of ball screw 0.01 m
Ksp|Spring stiffness (299 )N/m
Kel|Linear damping factor (0.87) Ns/m

M |Mass of linear damping system 0.244 kg
Kd | Position sensor coefficient 50 V/m
T{0 [Friction torque 0.037 Nm
Ff0 |Friction force 0.01 N

3-2. Parameter identification

The most of paramecters of the system (such as Kpa, Ra, Ki,
Ke, J, Kbs, 1 , M, and Ku) can be dircctly measured or
calculatcd. The other paramcters (Kvw, Ko, and K. ) are
dectermined from the experimental response of the system @
Koy is determined from the resonant frequency of the system,
Ka is determined from the declining oscilation of the step
responsc and Ker is determined so that the theorctical and
cxperimental frequency responscs of the open-loop system
agrec.
3-2-1. Frequency response

Figure 5 shows the theorctical and experimental frequency
responses (gain and phasc) of the sub-stage displaccment.
It can be noted that there is a good agrcement between
theorctical and cxperimental responscs. The slight diffcrence
between both responses is owed to the cffcct of Coulomb
friction.
3-2-2. Translent response

To analize the transicnt responsc of the system, the input
voltage to thc DC motor was choscn 1o be as shown in Figure
6. Figurc 7 comparcs the theorctical and cxperimental
transicnt responscs of the positioning mechanism. It can be
notcd that there is a good agrecement between both responses.
Given to the effect of Coulomb friction, the experimental
transicnt responsc docs not last as the calculatcd response.
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Fig.5 Frequency responsc of positioning sysicm (opcn-loop)
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Fig. 7 Transicnt responsc of positioning system (opcn-loop)

4. H control theory

In this study, the control system has been designed
accordlng to the DGKF type He control theory[6]. This
“theory. has been developed from LQG control theory in which
disturbances and control variables are treated explicitly.
Fecdback and obscrver gains arc obtained by solving two
Riccati cquations. The basic block diagram of the system with
He control is shown in Figure 8.
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Fig.8 Basic block diagram of system with He control

In Figure 8, G stands for the generalized plant, K is the
controller, u is the control input, y is the measured
variable, z represents the controlled variable, and w is the
disturbance vector. According to the He control method, a
controller is designed so that the He norm of the closed~
loop transfer function T from disturbances to controlled
variablcs is Icss than y . That is :

[Tecf < " ®
The cffect of the disturbance on the controlled varjables is
reduced by choosing the smaller value of y .

The generalized plant G is described by the equations :
dx

— = Ax + Biw+ Bau

dt

1=Cix+ Duw+ Duu e v o ®
y=Cix+ Duws Dunu

where x is the state vector which includes the state variables
of the actual system and other variables representing
weighting functions, intcgral action ctc..

The following assumptions are required o design a controller

according 10 DGKF H= control thcory :

(1)[A,B1] stabilizabic and [ C1, A ] detectable

(1) [A,B.] stabilizablc and [Cs, A ] detectable

(1) D1y = 0 and D22 =0 )
(IV)Di"Ci=0 and D" Dz = 1

(V)BiDn™ =0 and DuDu™ = 1

The Hee controller can then be writlen as

A

d—x=f\)“(-ZLy u = F}
dt

where
A=A+y?BB"X + B:F + ZLC »
F=-B." X,L=-YCi" Y
Z=(T-y7¥Xx)"

X is the estimate of X, and X and Y are the positive
solutions of the following Riccati cquations:

AT X+ XA+CTCr+ X[y BB - BB |X =0 -« - ®
AY + VAT + BB + Y[y 'CI Ci-C Y =0« - @

The spectral radius of the product XY must be less than y’
p(XY)<¥y? oo @

5. Generalized plant

In order to climinate stcady-statc crrors originated by
friction, intcgral action was added to the controllcd sysicm as
shown in Figurc 9, wherc P(s) is the positioning mechanism
with power amplificr, K(s) is the compensator, and Ty is the
integral time constant. The descriptions of all the matrices of
the generalized plant arc shown in Equation @ . Although
K(s) is thc compensator of the gencralized plant, the
compensator of the actual system is C(s) = K(s)/Ts.

Total comp.
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Fig. 9 He control system with integral action
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Figurc 10 shows the block diagram of the gencralized plant.
The control input u and sub-stage displacement X, arc the
controlled variables Z1 and Zs, respectively. wi and w are
the input s\;idc noise and the scnsor noise, respectively. wa and
w4 arc the disturbancces of friction torque and friction force,
respectively. b2,by, and €6 arc weighting factors. The He
compensator was designed by choosing optimal valuces of the
wcighing factors.

6. Simulation

In order to examine the performance of the positioning
systcm with Hes control, frequency and step responscs of the
sub-stagc motion were analyzed. The responsc of the
systcm with He control was compared with the responsc
obtaincd when a PI compensator with notch filter is used.
6-1. Bode plots

Figurc 11 shows the opcn—loop characteristics of the
positioning mechanism. Here, fa is the mechanical resonant
frequency. Figures 12 and 13 show the bode plots of the He
and Pl-notch filier compensators, respectively. It is noted
that for both compensators the gain of the bode plots decrcase
arround the resonant frequency of the system (SHz). However,
the He controller presents a smoother frequency response.
Figurcs 14 and 15 show the bode plots of the closcd-loop
transfer function. The closcd loop transfer function of the
system with Hee compensator has higher cut-off frequency
which mcan a better performance for a wide range of
frequencics.
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Fig.19 Step response using PI-noch filter control

theory when changing resonant frequency
6-2. Step responses 6-2-3. Response when the friction forces are modified

Figures 20 and 21 show the step responses of thc He

control and PI-notch filter control with friction as variable
paramcter. The stcp response of PI-notch filter control
oscillated when the friction was decreased to 0.1 times its
nominal value and the speed of responsc fell when the friction
was incrcased to 5 times. On the other hand, the stcp responsc
of He control varicd little as the friction was changed.

6-2-1. Response of nominal system

Figures 16 and 17 show the step responses of the closed-
loop system using Hee, and PI-notch filter compensator. The
slep response of He control had better convergence than that
of conventional PI-notch filter control. Under conventional
PI cortrol, the step response took a long time to converge.

Fig.16 Step response using He control lhco'ry
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7 Fig. 20 Stcp response using H « control theory

E 3 when changing friction
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Fig. 21 Step responsc using PI-notch filter control
when changing friction

6-2-2. Response when changing the mechanlical resonant
frequency

Figures 18 and 19 show the step responses of the He and
PI-notch filter control when the sub-stage mass has been
increased by 20%. While the step response of the system with
PI-notch filter varicd and oscillations arose, the step response
of the system with He control did not vary much. These
results verify the robustness properties of the He compcnsator.

7. Experimental results (step response)

7-1. Response of nominal system
Figures 22 and 23 show the step responscs using He and
PI-notch filter control methods. Experimental results show

o~ n : clearly the different features of both control methods under the
g 30 U 3 § influence of friction disturbances. These results show that the
g ;3;" specd of response using He control is faster than that of PI-
8 E notch filter control. In addition, mechanical resonance
E. \ % vibrations were better damped by He control than by PI-
o [ 8 notch filter control. :

0 1.5V 30

Time(sec)

Fig.18 Step responsc using He control theory
when changing resonant frequency
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7-2. Response when changing the resonant frequency Fig.27 Expcrimental step response using PI-notch filtcr
Figures 24 and 25 show the stcp responses using He= and PI control when changing friction value
-notch filter control methods when the sub-stage mass has
been increased 20%. The experimental results are similar to 8. Conclusions

the calculated results shown in Figures 18 and 19. The step
response of PI-notch filter control varied, and oscillations
arosc when the mass was increased, while the step response of
Hee control did not vary much.

A positioning contro] system taking into account mechanical
resonance and Coulomb friction has been designed according
to DGKF type He control theory. Main disturbances such as
Coulomb friction were modeled and an augumented plant with

- = integral action was formulated. The followings has been
E 30p [V v 3 § confirmed from the simulation and experimantal results.
\’g g (1) He control presents better convergence and stability
g E propertics than conventional control (PI with notch filter).
2 E (2) He control has good robustness for all the range of
A = 5 operating conditions even if there exist disturbances such as
0 1.5 VU 30 Coulomb friction and changes in the parameters of the
Time(sec) system and its cnvironment,
Fig.24 Experimental stcp response using He control theory
when changing resonant frequency Acknowledgment
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7-3. Response when changing friction values

Figures 26 and 27 show the step responscs using He and
PI-notch filter control when changing friction coefficient to
0.1 and S times of its nominal value. When decreasing friction,
the linear damping factor K became smaller, thercfore the
diffcrence between nominal and friction~changed plant
around the resonance frequency became larger. Conscquently
the resonance oscillations arose when the friclion was
decreased. The system with Hw control prescnts oscillations

— 517 —



