• Title/Summary/Keyword: Guidance Technology

Search Result 1,016, Processing Time 0.024 seconds

A Study on Problems and Improvement of Disaster Prevention Technology Guidance(Focused on construction disaster) (재해예방 기술지도의 문제점과 개선방안에 관한 연구 (건설 재해를 중심으로))

  • Roh, Tae-Woo;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.47-55
    • /
    • 2016
  • Recently, industrial accidents rate has been gradually decreasing due to the development of safety management methods, but until now, the accident rate in the construction sector is higher than other industries. Large-scale construction sites are operating systematic safety systems to reduce industrial accidents. However, small and medium sized construction sites do not have systematic safety system and lack safety management ability, so that disaster is not reduced compared with large scale construction site. As a result, disaster prevention technology instruction system has been implemented to reduce the disasters of small and medium scale construction sites. However, in the case of a small construction site less than 2 billion won, there is little decrease in the accident rate, and in some cases, the accident rate increases. After the technical guidance system has been implemented, it is necessary to identify the performance and problems of implementation and to improve its effectiveness. In this study, we suggest the improvement plan to improve the efficiency of the technical guidance system by analyzing the problems and actual conditions of technical guidance operation in small and medium sized construction work sites.

Optimization-Based Determination of Apollo Guidance Law Parameters for Korean Lunar Lander (달착륙 임무를 위한 최적화 기반 아폴로 유도 법칙 파라미터 선정)

  • Jo, Byeong-Un;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.662-670
    • /
    • 2017
  • This paper proposes an optimization-based procedure to determine the parameters of the Apollo guidance law for Korean lunar lander mission. A lunar landing mission is formulated as a trajectory optimization problem to minimize the fuel consumption and the reference trajectory for the lander is obtained by solving the problem in the pre-flight phase. Some parameters of the Apollo guidance, which are coefficients of the polynomial used to define the guidance command, are selected based on the reference trajectory obtained in the pre-flight phase. A case study for the landing guidance of Korean lunar lander mission using the proposed procedure is conducted to demonstrate its effectiveness.

Navigation of Unmanned Vehicle Using Relative Localization and Magnetic Guidance (상대위치인식과 자계안내를 이용한 무인주행차량의 주행기법)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.430-435
    • /
    • 2011
  • In this paper, a navigation technology of an unmanned vehicle using relative localization and magnetic guidance is proposed. Magnetic guidance system had been developed as a robust autonomous driving technology as long as magnetic fields on the path are detected. Otherwise, if magnetic fields were not detected due to some reasons, the vehicle could not drive. Therefore, in order to overcome the drawback, we propose that relative localization would be combined to magnetic guidance system. To validate the usefulness of the proposed method, a robotic vehicle was set up with the magnetic guidance system and the relative localization. In addition, the unmanned driving test was realized on the road without the magnetic fields so that the proposed method is verified by the experiment.

Digital Transformation for an Evacuation Guidance System by Using Artificial Intelligence Technology (인공지능을 활용한 피난유도시스템 디지털 전환)

  • Kim, Tony;Seo, William;Lee, Taegyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.403-404
    • /
    • 2023
  • In an era where everything is digitalized using AI(Artificial Intelligence), such as the ChatGPT craze, the evacuation guidance system still uses an analog and fixed method, so there is a limit to quick response in case of fire. In order to overcome this, we introduce a digitally transformed evacuation guidance system using AI and discuss its effectiveness.

  • PDF

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

Experimental Validation of Multiple UAVs with Vector Field Guidance for SEAD(Suppression of Enemy Air Defense) (벡터필드 유도기법이 적용된 다수 무인기를 이용한 적 방공망 제압 임무의 실험적 검증)

  • Jung, Wooyoung;Kim, Ki-Duck;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In modern warfare, the importance of SEAD(Suppression of Enemy Air Defense) mission is being emphasized. However, this mission runs the risk of hull damage or casualties of our friendly air forces. Because of these risks, research on the way of minimizing damages and enhancing mission capability is under active discussion. As a part of this research, SEAD mission planning with multiple UAVs has been covered using vector field guidance. This guidance method not only applies to various forms of flight path but also requires less computational power than other guidance methods. Therefore, in this paper, planning methods of SEAD mission for multiple UAVs using vector field guidance and experimental data from flight experiments regarding designed mission has been covered.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

A Guidance Law Study for Anti-Ballistic Missile Defense (대탄도탄 방어용 유도기법 연구)

  • Jung, Ho Lac;Song, Taek Lyul
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.84-99
    • /
    • 1998
  • As a part of closed-loop guidance law studies for anti-ballistic missile defense, a mid-course guidance law is proposed to engage the target with the predetermined attitude for increased terminal effectiveness. The proposed guidance law is based on the predicted target position calculated from a simplified solution of target motion and the estimates of an extended Kalman filter utilizing noisy nonlinear radar measurements. Extension of the proposed mid-course guidance to 3 dimensional engagements are also studied. Performance of the proposed mid-course guidance law together with a terminal guidance law in the form of conventional proportional navigation guidance is evaluated by a series of simulation studies.

  • PDF

An Improved Guidance Algorithm for Smooth Transition at Way-Points in 3D Space for Autonomous Underwater Vehicles

  • Subramanian, Saravanakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • This paper presents an improved guidance algorithm for autonomous underwater vehicles (AUV) in 3D space for generating smoother vehicle turn during the course change at the way-points. The way-point guidance by the line-of-sight (LOS) method has been modified for correcting the reference angles to achieve minimal calculation and smoother transition at the way-points. The algorithm has two phases in which the first phase brings the vehicle to converge to a distance threshold point on the line segment connecting the first two way-points and the next phase generates an angular path with smoother transition at the way-points. Then the desired angles are calculated from the reference and correction angles. The path points are regularly parameterized in the spherical coordinates and mapped to the Cartesian coordinates. The proposed algorithm is found to be simple and can be used for real time implementation. The details of the algorithm and simulation results are presented.

Target Adaptive Guidance Using Near-Zone Information from IR Seeker (근접영역에서의 IR 탐색기 정보를 이용한 표적적응유도)

  • 엄태윤;김필성
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2002
  • A target adaptive guidance(TAG) algorithm is proposed employing the near-zone signal that can be measured from an infrared seeker. The guidance order is composed of a conventional PNG command and an additional command to be calculable from an additional LOS rate between a hot point of target and a required intercept point. The characteristic of the near-zone signal is similar to that of LOS rate that is inversely proportional to the square of time-to-go. Hence the proposed scheme can be applied to real systems with no estimator for time-to-go. From analysis results on the miss distance with perfect missile and perfect seeker, it follows that the proposed TAG algorithm guarantees missile to be ideally guided to the required intercept point. And it is less affected by the TAG start time and a proportional navigation ratio than other TAG schemes using a LOS rate such as a step bias or a ramp bias.