DOI QR코드

DOI QR Code

Experimental Validation of Multiple UAVs with Vector Field Guidance for SEAD(Suppression of Enemy Air Defense)

벡터필드 유도기법이 적용된 다수 무인기를 이용한 적 방공망 제압 임무의 실험적 검증

  • Received : 2014.12.10
  • Accepted : 2015.02.17
  • Published : 2015.03.01

Abstract

In modern warfare, the importance of SEAD(Suppression of Enemy Air Defense) mission is being emphasized. However, this mission runs the risk of hull damage or casualties of our friendly air forces. Because of these risks, research on the way of minimizing damages and enhancing mission capability is under active discussion. As a part of this research, SEAD mission planning with multiple UAVs has been covered using vector field guidance. This guidance method not only applies to various forms of flight path but also requires less computational power than other guidance methods. Therefore, in this paper, planning methods of SEAD mission for multiple UAVs using vector field guidance and experimental data from flight experiments regarding designed mission has been covered.

현대전에서 적 방공망 제압 임무는 과거에 비해 그 중요성이 점차 부각되고 있다. 그러나 본 임무는 적의 방공망에 아군의 항공기와 조종사가 노출되는 위험을 안고 있어, 아군의 피해를 최소화하면서 효과적으로 임무를 수행할 수 있도록 하는 연구가 활발히 진행되고 있다. 본 논문에서는 이러한 연구의 일환으로써, 벡터필드 유도기법을 이용하여, 다수 무인기의 적 방공망 제압 임무를 설계하였다. 벡터필드 유도기법은 다른 유도기법들에 비하여 계산 량이 적고 쉽게 응용이 가능한 이점이 있어, 다수 무인기 운용에 해당 기법을 적용하는 경우 무인기간의 상호 협동을 통한 다양한 형태의 임무를 계획할 수 있다. 따라서 벡터필드 유도기법을 이용한 다수 무인기의 적 방공망 제압 임무의 설계방법을 제시함과 동시에, 비행실험을 통하여 그 운용 가능성을 확인해 보았다.

Keywords

References

  1. Bolkmon, C., "CRS Report for Congress Military Suppression of Enemy Air Defence (SEAD): Assessing Future Needs," Congressional Research Service, Library of Congress, Washington, D.C., 2006.
  2. Hathaway, D. C., "Germinating a New SEAD: the Implications of Executing the SEAD Mission in a UCAV," MS Thesis, School of Advanced Airpower Studies, Air University Maxwell Air Force Base, AL, 2001.
  3. P. B. Sujit, A. Sinha, and D. Ghose, "Team, Game, and Negotiation based Intelligent Autonomous UAV Task Allocation for Wide Area Applications," Studies in Computational Intelligence, vol. 70, pp. 39-75, 2007. https://doi.org/10.1007/978-3-540-72696-8_3
  4. Office of the Secretary of Defense, "Unmanned aircraft Systems (UAS) Roadmap 2005-2030," U.S., Report, 2005.
  5. T. Schouwenaars, B. D. Moor, E. Feron, and J. How, "MIxed integer programming for multi-vehicle path planning," Proc. of European Control Conference 2001, Porto, Portugal, pp. 2603-2608, Sep. 2001.
  6. S. Lim and H. Bang, 2012, "A Proposal of New Vector Field Guidance for Unmanned Aircrafts," presented at the Conference on Korean Society for Aeronautical and Space Sciences, Pyeongchang, Gangwon-Do, 2012.
  7. W. Jung and H. Bang, 2013, "3 Dimensional Vector Field Guidance for Unmanned Aerial Vehicle," presented at the Conference on Korean Society for Aeronautical and Space Sciences, Jeju, 2013.
  8. E. W. Frew and D. A. Lawrence, 2005, "Cooperative Standoff tracking of Moving Targets by a team of Autonomous Aircraft," presented at the AIAA Guidacne, Navigation, and Control Conference and Exhibit, San Francisco, California.
  9. W. Jung and H. Bang, 2014, "Control Arrival Time and Speed for UAV Using 3 Dimensional Vector Field Guidace," presented at the Conference on Korean Society for Aeronautical and Space Sciences, Jeju, 2014.
  10. S. H. Yoon, Y. D. Kim, "Cooperative Control of Multiple Unmanned Aircraft for Standoff Tracking of a Moving Target," Journal of Korea Society for Aeronautical & Space Sciences, Vol. 39, No. 2, 2011, pp. 114-120 https://doi.org/10.5139/JKSAS.2010.39.2.114
  11. S. H. Lim, C. H. Pak, C. Y. Cho, H. C. Bang, "Development of Flight Control System for Gliding Guided Artillery Munition - Part II : Guidance and Control," Journal of Korea Society for Aeronautical & Space Sciences, Vol. 42, No. 3, 2014, pp. 229-236 https://doi.org/10.5139/JKSAS.2014.42.3.229