• Title/Summary/Keyword: Guaranteed bound

Search Result 64, Processing Time 0.03 seconds

POSTPROCESSING FOR GUARANTEED ERROR BOUND BASED ON EQUILIBRATED FLUXES

  • KIM, KWANG-YEON
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.891-906
    • /
    • 2015
  • In this work we analyze a postprocessing scheme for improving the guaranteed error bound based on the equilibrated fluxes for the P1 conforming FEM. The improved error bound is shown to be asymptotically exact under suitable conditions on the triangulations and the regularity of the true solution. We also present some numerical results to illustrate the effect of the postprocessing scheme.

The Guaranteed Bound of Horizon Size for the Stabilizing Receding Horizon Control

  • Quan, ZhongHua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.429-432
    • /
    • 2004
  • In this paper, we derive the guaranteed bound of the horizon size for the stabilizing receding horizon control(RHC). From the convergence property of the solution to the Riccati equation, it is shown that the lower bound can be represented in terms of the parameters in the given system model, which makes an off-line calculation possible. Additionally, it is shown to be able to obtain the stabilizing RHC without respect to the final weighting matrix. The proposed guaranteed bound is obtained numerically via simulation.

  • PDF

Guaranteed cost control for singular systems with time delays using LMI

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.1-44
    • /
    • 2002
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of a guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and upper bound of guaranteed cost function can be obtained simultaneously.

  • PDF

A guaranteed cost LQ regulator in the presence of parameter uncertainties (파라미터가 불확정된 경우의 guaranteed cost LQ 레귤레이터)

  • 이정문;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.367-369
    • /
    • 1986
  • Guaranteed cost control is a method applicable to a class of systems with uncertain parameters that guarantees an upper bound of the cost functional. This paper is concerned with a matrix decomposition technique used to yield a reasonable upper bound of the cost functional for a finite-time LQ regulator problem. The uncertain linear systems dealt with in this paper are described by a set of state equations of single-input phase-variable canonical form which contain unknown but bounded uncertain parameters.

  • PDF

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua;Deng, Feiqi;Wan, Anhua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.699-717
    • /
    • 2012
  • In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Non-fragile guaranteed cost control of delayed descriptor systems (시간지연 특이시스템의 비약성 보장비용 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.246-248
    • /
    • 2006
  • This paper is concerned with non-fragile guaranteed cost state feedback controller design algorithm for descriptor systems with time-varying delay and static state feedback controller with multiplicative uncertainty. The considered uncertainties are norm-bounded and time delay is time-varying. Under the condition of controller gain variations, conditions for the existence of controller satisfying asymptotic stability and non-fragility and controller design method are derived via LMI approach. Moreover, the measure of non-fragility and the upper bound to minimize guaranteed cost function are given.

  • PDF

Delay-dependent Guaranteed Cost Control for Uncertain Time Delay System

  • Lee, In-Beum;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.4-62
    • /
    • 2001
  • In this paper, we propose a delay-dependent guaranteed cost controller design method for uncertain linear systems with time delay. The uncertainty is norm bounded and time-varying. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, sufficient condition, which guarantees that the closed-loop system is asymptotically stable and the upper bound value of the closed-loop cost function is not more than a specied one, is derived in terms of Linear Matrix Inequalities(LMIs) that can be solved sufficiently. A convex optimization problem can be formulated to design a guaranteed cost controller, which minimizes the upper bound value of the cost function. Numerical examples show the activeness of the proposed method.

  • PDF

Non-fragile robust guaranteed cost control for descriptor systems with parameter uncertainties (변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, we consider the non-fragile robust guaranteed cost state feedback controllers design method for descriptor systems with parameter uncertainties and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile robust guaranteed cost controller, the measure of non-fragility in controller, the upper bound of guaranteed cost performance measure to minimize the guaranteed cost are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile robust guaranteed cost controller satisfies the asymptotic stability and minimizes the guaranteed cost for the closed loop descriptor systems with parameter uncertainties and controller fragility. Finally, a numerical example is given to illustrate the design method.

Guaranteed Cost Controller Design Method for Singular Systems with Time Delays using LMI (선형행렬부등식을 이용한 시간지연 특이시스템의 보장비용 제어기 설계방법)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and the upper bound of guaranteed cost function can be obtained simultaneously. Moreover, the proposed controller design method can be extended to the problem of robust guaranteed cost controller design method for singular systems with parameter uncertainties and time-varying delays. The validity of the proposed design algorithm is investigated through a numerical example.