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Abstract: In this paper, we derive the guaranteed bound of the horizon size for the stabilizing receding horizon control(RHC).

From the convergence property of the solution to the Riccati equation, it is shown that the lower bound can be represented in

terms of the parameters in the given system model, which makes an off-line calculation possible. Additionally, it is shown to be

able to obtain the stabilizing RHC without respect to the final weighting matrix. The proposed guaranteed bound is obtained

numerically via simulation.
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1. Introduction
Receding horizon control(RHC), also known as model pre-

dictive control(MPC), has received much attention due to

its many advantages such as good tracking performance, I/O

constraints handling and extension to the nonlinear system

compared with the steady state linear quadratic(LQ) con-

trol[1], [2], [3].

In order to obtain a stabilizing RHC, the final weighting ma-

trix is required to satisfy some matrix inequality [4]. If con-

trol gains of the RHC are obtained from these final weighting

matrices, the stability is guaranteed irrespective of the hori-

zon size. If the system dimension is large, it may be difficult

to find out a proper final weighting matrix from the matrix

inequality. In this paper, the stability based on the horizon

size is considered regardless of a final weighting matrix. We

provide a guide on how large the horizon size should be for

a stabilizing RHC. In this paper, it is not necessary to find

out a proper final weighting matrix separately. Additionally,

the guaranteed horizon is represented in terms of the pa-

rameters in the given system model, which makes an off-line

calculation possible.

This paper is structured as follows: Section 2 introduces

some preliminaries of the RHC; Section 3 describes the

derivation of the guaranteed bound of the horizon size for

the stabilizing RHC, Section 4 provides the numerical exam-

ple and finally, the conclusions are stated in Section 5.

2. Preliminaries of the RHC
Let consider the following discrete time-invariant linear sys-

tem without constraints:

xk+1 = Axk + Buk

yk = Cxk (1)

where uk ∈ Rn is the control input and xk ∈ Rm is the state

of the plant, and yk ∈ Rp is the output of the plant. The

optimal control is obtained first on the horizon [k, k + N ].

Here k indicates the current time and N is the horizon size,

i.e., k + N is the final time.

The cost function is given by

J(xk, k, k + N) = min
u

N−1∑
i=0

1

2
(xT

k+iQxk+i + uT
k+iRuk+i)

+
1

2
xT

k+NQk+Nxk+N (2)

where Q ≥ 0, R > 0, and Qk+N ≥ 0. Then, the optimal

solution on the the horizon [k, k + N ] can be obtained from

u∗
k+i=−[R + BT Pk+i+1,k+NB]−1BT Pk+i+1,k+NAxk+i

i=0, ..., N − 2, N − 1 (3)

where the Riccati equation are given by

Pk+i,k+N=AT [I + Pk+i+1,k+NBR−1BT ]−1Pk+i+1,k+NA + Q

i=N − 1, N − 2, ..., 1 (4)

with

Pk+N,k+N=Qk+N (5)

The receding horizon LQ control at time k is given by the

first control uk, which can be obtained from (3) with i = 0

as

u∗
k=−[R + BT Pk+1,k+NB]−1BT Pk+1,k+NAxk (6)

From (6), it can be seen that the RDE(4) should be itera-

tively computed N − 1 times with (5) to obtain the RHC.

In order to obtain a stabilizing RHC, it is necessary to deter-

mine an appropriate horizon size to obtain the steady state

solution of RDE.

3. Guaranteed bound of the Horizon Size
In this section, we derive a numerical guaranteed bound of

the horizon size for the stabilizing RHC.

Let

R0,k+1
�
= R + BT Pk+1,k+NB (7)

Lk
�
= [R + BT Pk+1,k+NB]−1BT Pk+1,k+NA (8)

Ac,k
�
= A − BLk (9)

P̃k+1,k+N
�
= Pk+1,k+N − P (10)
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and R0, L and Ac is the steady state value of R0,k+1,Lk and

Ac,k, respectively.

Then, from the convergence property of the solution of RDE,

we have

R0,k+1 − R0 = BT P̃k+1,k+NB (11)

Lk − L = R−1
0,k+1B

T P̃k+1,k+NAc (12)

Ac,k = (I − BR−1
0,k+1B

T P̃k+1,k+N )Ac (13)

and

P̃k+i,k+N = AT
c P̃k+i+1,k+NAc

− AT
c P̃k+i+1,k+NBR−1

2,k+iB
T P̃k+i+1,k+NAc(14)

From (14),

P̃k+i,k+N ≤ AT
c P̃k+i+1,k+NAc (15)

Since ρ(A) ≤ ‖A‖ρ for any matrix norm, where ρ(A) is the

spectral radius of a matrix A. Thus from (13) we have

‖Ac,k‖ρ≤(‖I‖ρ + ‖BR−1
0,k+1B

T ‖ρ‖P̃k+1,k+N‖ρ)‖Ac‖ρ

≤(‖I‖ρ + ‖BR−1BT ‖ρ‖P̃k+1,k+N‖ρ)‖Ac‖ρ (16)

and from (15) we have

‖P̃k+i,k+N‖ρ ≤ ‖AT
c ‖ρ‖P̃k+i+1,k+N‖ρ‖Ac‖ρ (17)

From (17),

‖P̃k+1,k+N‖ρ ≤ ‖AT
c ‖N−1

ρ ‖P̃k+N,k+N‖ρ‖Ac‖N−1
ρ (18)

Substituting (18) into (16), we have

‖Ac,k‖ρ≤(‖I‖ρ + ‖BR−1BT ‖ρ‖P̃k+1,k+N‖ρ)‖Ac‖ρ

≤(‖I‖ρ + ‖BR−1BT ‖ρ‖AT
c ‖N−1

ρ

×‖P̃k+N,k+N‖ρ‖Ac‖N−1
ρ )‖Ac‖ρ (19)

For the stabilizing RHC, the spectral radius of the closed

loop matrix Ac must be less than 1. Thus,

(‖I‖ρ+‖BR−1BT ‖ρ‖AT
c ‖N−1

ρ

×‖P̃k+N,k+N‖ρ‖Ac‖N−1
ρ )‖Ac‖ρ < 1 (20)

From (20),

‖AT
c ‖N−1

ρ ‖P̃k+N,k+N‖ρ‖Ac‖N−1
ρ <

1
‖Ac‖ρ

− ‖I‖ρ

‖BR−1BT ‖ρ
(21)

Apply the natural logarithm to both sides of the equation

(21) getting

(N − 1)(ln ‖AT
c ‖ρ + ln ‖Ac‖ρ) < ln

1
‖Ac‖ρ

− ‖I‖ρ

‖BR−1BT ‖ρ‖P̃k+N,k+N‖ρ

Thus

N > 1 + Ξ (22)

where

Ξ =
ln

1
‖Ac‖ρ

−‖I‖ρ

‖BR−1BT ‖ρ‖P̃k+N,k+N‖ρ

ln ‖AT
c ‖ρ + ln ‖Ac‖ρ

(23)

In order to obtain ‖Ac‖ρ in (23), the eigenvalues of the closed

loop matrix must be known. Fortunately, the eigenvalues can

be obtained by computing those of the hamiltonian matrix.

Let the Hamiltonian is as follows:

H(xk, uk, λk+1) =
1

2
(xT

k Qxk + uT
k Ruk) + λT (Axk + Buk)(24)

Thus we can obtain the following Hamiltonian matrix cor-

responding to the above Hamiltonian:

H =

[
A −BR−1BT

Q AT

]
(25)

That is, [
xi+1

λi

]
= H

[
xi

λi+1

]
(26)

Under the assumption that (A,B) is controllable and A is

nonsingular, (26) can be rewritten as follows:[
xi+1

λi+1

]
= HF

[
xi

λi

]
(27)

where

HF =

[
A + BR−1BT A−T Q−BR−1BT A−T

−A−T Q A−T

]
(28)

or [
xi

λi

]
= HB

[
xi+1

λi+1

]
(29)

where

HB =

[
A−1 A−1BR−1BT

QA−1AT + QA−1BR−1BT

]
(30)

The first n eigenvalues of HF are the eigenvalues of Ac =

A − BL and are all inside the unit circle, |λi| < 1, i.e.,

asymptotically stable.

The remaining eigenvalues of HF satisfy:

λn+i =
1

λi
i = 1, ..., n (31)

Thus we can obtain

‖Ac‖ρ = max{|λ1|, |λ2|, ..., |λn|} (32)

In this paper, we consider the case of Qk+N = 0, i.e.,

Pk+N,k+N = 0. Thus, ‖P̃k+N,k+N‖ρ = ‖P‖ρ. There some

results for the guaranteed bound for the solution of Riccati

equation[5], [6], [7], [8]. In [6], [7],the following guaranteed

bound of the solution of RDE is given:

P ≥ AT (P−1
0 + BBT )−1A + Q (33)

where the positive definite matrix P0 is defined as

P0 ≥ AT (ξ−1I + BBT )−1A + Q (34)

with

η = σ2
n(A) + σ2

1(B)λn(Q) − 1

ξ =
η + [η2 + 4σ2

1(B)λn(Q)]
1
2

2σ2
1(B)

(35)
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In (35), λi(A) is the ith eigenvalue of A , all of |λi(A)| are

arranged in non-increasing order; σi(A) is the ith singular

value of A, the values of σi(A) are arranged in non-increasing

order.

From (32)-(35), we can obtain the spectral radius of the

closed loop matrix and the bound of the solution of RDE

so that (22) and (23) can be rewritten as follows:

N > 1 +
ln

1
ρ(Ac)−1

ρ(BR−1BT )ρ(P̂ )

2 ln ρ(Ac)
(36)

where P̂ is the guaranteed bound of P obtained from (33).

Thus the guaranteed bound of the horizon size for the sta-

bilizing RHC can be obtained through off-line calculation

from (36). Furthermore, the stabilizing RHC can be ob-

tained without respect to the final weighting matrix if the

horizon size is larger than the guaranteed bound due to the

restriction of the spectral radius of the closed loop matrix to

be less than 1 in the derivation of the guaranteed bound.

4. Simulation
In this section, a numerical example is given with the follow-

ing system matrices:

A =

[
2 0.1

0 0.9

]
, B =

[
0

0.0787

]
, C =

[
1 0

]
(37)

and

Q =

[
1 0

0 1

]
, R = 1, QN = 0. (38)

The initial state is x0 = [−2, 3].

The obtained horizon size by the trial and error is N = 10.

From the Fig.1 and Fig.2, it can be seen that the closed loop

system is unstable when N = 9 but stable when N = 10.
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Fig. 1. RHC for Horizon Size N=9(State)

From (36), we can obtain the guaranteed bound of the hori-

zon size as N = 25 for this example. The obtained guaran-

teed bound is larger than the horizon size obtained by trial,

thus it can be noted that the stabilizing RHC can be ob-

tained if the horizon size is larger than 25 considering the

stabilizing RHC is obtained with horizon size of 10.
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Fig. 2. RHC for Horizon Size N=10(State)
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Fig. 3. RHC for Horizon Size N=10(Control)

5. Conclusions
In this paper, the guaranteed bound of the horizon size for

the stabilizing RHC is derived, which can be obtained by

off-line calculation due to its representation in terms of the

parameters in the given system model. Because we consid-

ered the case of zero final weighting matrix, thus the ob-

tained RHC is easier to be stabilizing for any positive final

weighting matrix when the horizon size is larger than the

guaranteed bound. In other words, the stabilizing RHC can

be obtained without respect to the final weighting matrix.

The proposed guaranteed bound is obtained numerically via

simulation.
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