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POSTPROCESSING FOR GUARANTEED ERROR BOUND

BASED ON EQUILIBRATED FLUXES

Kwang-Yeon Kim

Abstract. In this work we analyze a postprocessing scheme for improv-
ing the guaranteed error bound based on the equilibrated fluxes for the
P1 conforming FEM. The improved error bound is shown to be asymp-
totically exact under suitable conditions on the triangulations and the
regularity of the true solution. We also present some numerical results to
illustrate the effect of the postprocessing scheme.

1. Introduction

In this work we consider the second-order elliptic equation

(1) −∆u+ cu = f in Ω

subject to the boundary condition

(2) u = uD on ΓD and
∂u

∂n
= gN on ΓN ,

where Ω is a bounded polygonal domain in R
2 with ∂Ω = ΓD ∪ ΓN , ΓD∩ΓN =

∅, and c ≥ 0 is a bounded function on Ω. When ΓD = ∅, we assume that c > 0
in a subdomain of Ω having a positive measure. Moreover, c is supposed to be
of moderate size, i.e., we do not consider the singularly perturbed case.

Given some finite element approximation uh ≈ u, the unknown error e :=
u − uh is estimated by an error estimator which is computable a posteriori in
terms of the numerical solution and the given problem data. There are currently
a number of error estimators available in the literature (see the monographs
[2, 3] for a complete discussion), most of which are reliable and efficient in the
sense that the following upper and lower bounds hold for the estimated error
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η and the actual error in the energy norm ||| · |||

C1η + (h.o.t) ≤ |||e||| ≤ C2η + (h.o.t),

where the positive constants C1, C2 are independent of the mesh size and (h.o.t)
represents a higher order term. Some error estimators produce surprisingly
accurate results by exhibiting the so-called asymptotic exactness

|||e||| = η + (h.o.t) or lim
h→0

η

|||e|||
= 1

under favorable conditions which ensure some superconvergence result (see, for
example, [4, 5, 11, 12, 13, 15, 17, 18, 22, 23]).

In recent years, there has been an intensive study of the error estimators
providing the guaranteed error bound

(3) |||e||| ≤ η(σh) + (h.o.t)

based on recovery of the H(div)-conforming vector approximation σh ≈ σ =
∇u (a specific form of η(σh) is given in (8) below). We refer to [1, 7, 10, 16,
19, 20, 21] for recent results on conforming FEMs and [14] for earlier results.
Numerical experiments show that in many cases the effectivity index η(σh)/|||e|||
lies below 2, but it was explained in [8] that there exists a threshold between
η(σh)/|||e||| and 1 which limits the accuracy of η(σh). One way of improving the
accuracy of η(σh) is to add a correction term curlϕh and make η(σh+curlϕh)
as small as possible over a set of properly chosen trial functions ϕh ∈ H1(Ω)
such that ϕh|ΓN

= 0 (cf. [8, 10, 20]). This postprocessing was explored in
much detail in [8], where ϕh is chosen to be finite element functions of the

same degree as uh over successively red-refined triangulations, and proved to
be very effective for several choices of σh available in literature.

In this paper we consider the same postprocessing over a different set of finite
element functions ϕh for the P1 conforming FEM. The vector approximation
σh is constructed in the lowest-order Raviart–Thomas space using the piece-
wise linear equilibrated fluxes of Ainsworth and Oden [2]. Then we seek the
optimal function ψh which minimizes η(σh+curlϕh) over the set of continuous
piecewise quadratic bump functions ϕh (defined on the same triangulation as

uh) such that ϕh|ΓN
= 0. This gives rise to a global but well-conditioned SPD

matrix system which can be efficiently solved by the conjugate gradient method
(with no or the simple diagonal preconditioner). Actually, only a few cg iter-
ations are sufficient to gain significant improvement as observed by numerical
results of [8] and Section 5 of this paper.

The idea of choosing higher order functions for ψh was also mentioned in
[8], but not further discussed. In this paper we will prove that the guaranteed

error bound η(σh+curlψh) is asymptotically exact under the same conditions
on the triangulations and the regularity of the solution u as for the gradient
recovery error estimator [22] and the Bank–Weiser error estimator [17]. As is
usual, the proof depends on the superconvergence property of σh. Using the
results of [17], we will first show that σh is super-close to the Fortin projection
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of σ, and then deduce from this that the postprocessed vector approximation
σh + curlψh converges to σ in the L2 norm at a higher rate than ∇uh.

The remainder of the paper is organized as follows. In the next section
we introduce some notation and preliminary results on the error estimator
yielding the guaranteed error bound. In Section 3 we establish the super-
closeness between σh and the Fortin projection of σ. In Section 4 we present the
postprocessing scheme for computing the optimal function ψh and then derive
the asymptotic exactness of the improved error bound η(σh+curlψh). Finally,
some numerical results are reported in Section 5 to confirm the theoretical
results and illustrate the performance of η(σh + curlψh).

2. Preliminaries

We use the standard notationWm,p(G) and ‖ ·‖m,p,G for the Sobolev spaces
and their norms over a domain G ⊂ R

n (n = 1, 2), with Hm(G) = Wm,p(G)
and ‖ · ‖m,p,G = ‖ · ‖m,G when p = 2. The L2 inner product and norm over G
are denoted by (·, ·)G and ‖ · ‖0,G, respectively.

Let {Th}h>0 be a shape-regular family of triangulations of Ω in the usual
sense. For each triangulation Th, the mesh size is defined as h = maxK∈Th

hK .
The set of all edges of Th is denoted by Eh, and we set

ED = {γ ∈ Eh : γ ⊂ ΓD}, EN = {γ ∈ Eh : γ ⊂ ΓN}, EI = Eh \ (ED ∪ EN ).

For an element K ∈ Th, the diameter of K is denoted by hK and the set of
three edges ofK by EK . Throughout the paper, C will denote a generic positive
constant independent of the mesh size h which may assume different values at
different places. We also use the notation Pr(K) to denote the space of all
polynomials on K of total degree less than or equal to r ≥ 0.

The variational formulation of the model problem (1)–(2) is stated as follows:
find u ∈ H1(Ω) such that u|ΓD

= uD and

(4) B(u, v) = (f, v)Ω +

∫

ΓN

gNv ds ∀v ∈ H1
D(Ω),

where

B(u, v) =
∑

K∈Th

BK(u, v), BK(u, v) = (∇u,∇v)K + (cu, v)K

and

H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}.

The energy norm over a subdomain G ⊂ Ω is defined as

|||v|||G :=

(

∑

K⊂G

BK(v, v)

)1/2

=
(

‖∇v‖20,G + ‖c1/2v‖20,G
)1/2

.

For ease of presentation, we will henceforth assume that the Dirichlet datum
uD is continuous and piecewise linear over ED and the Neumann datum gN is
piecewise constant over EN . Subsequent results are easily extended to more
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general data, involving only additional higher order perturbations if uD and
gN are piecewise smooth.

Let uh be the continuous piecewise linear finite element approximation of
the problem (4) over the triangulation Th such that uh|ΓD

= uD. Following
Chapter 6 of [2], we construct approximate boundary fluxes {gK ≈ ∂u

∂nK
}K∈Th

satisfying the first-order equilibration conditions

(5)



















(f, vh)K −BK(uh, vh) +

∫

∂K

gKvh ds = 0 ∀vh ∈ P1(K), ∀K ∈ Th

gK + gK′ = 0 on ∂K ∩ ∂K ′

gK = gN on ∂K ∩ ΓN .

The approximate boundary flux gK is taken to be a linear function on every
edge of ED ∪ EI . By a clever choice of degrees of freedom the construction
can be done by solving small local problems on patches of elements around the
vertices of Th; see [2] for more details.

Once the equilibrated fluxes {gK ∈ L2(∂K)}K∈Th
are found, we can locally

compute a vector approximation σh ≈ σ = ∇u in the lowest-order Raviart–
Thomas space

RT0(K) := (P0(K))2 ⊕ (x, y)P0(K)

by specifying the normal component of σh|K on ∂K with

(6)

∫

γ

σh|K · nK ds =

∫

γ

gK ds ∀γ ∈ EK ,

where nK denotes a unit normal outward to K. By virtue of the equilibration
conditions (5), σh has continuous normal components across edges of Th and
satisfies the local conservation law

(7) (divσh + f − cuh, 1)K = 0 ∀K ∈ Th.

We can then obtain the following guaranteed error bound by straightforward
extension of [1, 7, 10, 16, 21] to the case of nonzero c of moderate size

(8) |||u−uh|||Ω ≤

{

∑

K∈Th

(

‖σh−∇uh‖0,K +
hK
π

‖ divσh+f −cuh‖0,K

)2}1/2

.

Numerical results show that the error bound (8) is not asymptotically exact
even when the triangulation Th is uniform and the solution u is smooth.

Before closing this section, we define the global Raviart–Thomas and Brezzi–
Douglas–Marini spaces over Th by

RT0 = {τ ∈ H(div; Ω) : τ |K ∈ RT0(K) ∀K ∈ Th},

BDM1 = {τ ∈ H(div; Ω) : τ |K ∈ (P1(K))2 ∀K ∈ Th},

where

H(div; Ω) = {τ ∈ (L2(Ω))2 : div τ ∈ L2(Ω)}.
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Note that σh ∈ RT0 ⊂ BDM1 although it is computed locally on each element
of Th. We also define the Fortin projections Πh : (H1(Ω))2 → RT0 by

(9)

∫

γ

Πhτ · nγ ds =

∫

γ

τ · nγ ds ∀γ ∈ Eh

and Π1
h : (H1(Ω))2 → BDM1 by

∫

γ

Π1
hτ · nγ µ ds =

∫

γ

τ · nγ µ ds ∀µ ∈ P1(γ), ∀γ ∈ Eh,

where nγ denotes a unit normal to γ. It is well known that

‖σ −Πhσ‖0,Ω ≤ Ch‖σ‖1,Ω, ‖σ −Π1
hσ‖0,Ω ≤ Ch2‖σ‖2,Ω.

3. Superconvergence result

In this section we will establish the super-closeness between the vector ap-
proximation σh and the Fortin projection Πhσ of σ = ∇u assuming that
u ∈ H3(Ω)∩W 2,∞(Ω). Using the scaling argument and the definitions (6) and
(9), we find that for every K ∈ Th,

‖σh −Πhσ‖
2
0,K ≤ ChK‖(σh −Πhσ) · nK‖20,∂K

≤ C
∑

γ∈EK

∣

∣

∣

∣

∫

γ

σh · nK ds−

∫

γ

σ · nK ds

∣

∣

∣

∣

2

= C
∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

2

.

Thus we need to estimate the flux error
∫

γ

(

gK − ∂u
∂nK

)

ds for γ ∈ EK .

Lemma 3.1. Assume that u ∈ H2(Ω) and let uI be the standard nodal inter-

polant of u. Then there exists a constant C > 0 such that for every K ∈ Th,

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

≤ C|||uh − uI |||ωK
+ ChK |u|2,ωK

,

where ωK =
⋃

{K ′ ∈ Th : K ∩K ′ 6= ∅}.

Proof. Using the Cauchy–Schwarz inequality and then the triangle inequality,
we obtain

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

≤ Ch
1/2
K

(∥

∥

∥

∥

gK −

〈

∂uh
∂nK

〉∥

∥

∥

∥

0,∂K

+

∥

∥

∥

∥

〈

∂uh
∂nK

〉

−
∂u

∂nK

∥

∥

∥

∥

0,∂K

)

,
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where

〈

∂uh
∂nK

〉

=











1
2 (∇uh|K +∇uh|K′) · nK on ∂K ∩ ∂K ′

∇uh|K · nK on ∂K ∩ ΓD

gN on ∂K ∩ ΓN .

The first term is handled by Theorem 6.2 of [2] and the equality f = −∆u+cu:

h
1/2
K

∥

∥

∥

∥

gK −

〈

∂uh
∂nK

〉∥

∥

∥

∥

0,∂K

≤ C|||u− uh|||ωK
+ ChK‖f − cuh‖0,ωK

≤ C|||u− uh|||ωK
+ ChK |u|2,ωK

≤ C|||uI − uh|||ωK
+ ChK |u|2,ωK

.

For the second term we use the equality
〈

∂u
∂nK

〉
∣

∣

∂K
= ∂u

∂nK

∣

∣

∂K
and the trace

inequality to obtain

h
1/2
K

∥

∥

∥

∥

〈

∂uh
∂nK

〉

−
∂u

∂nK

∥

∥

∥

∥

0,∂K

≤ C|u− uh|1,ωK
+ ChK |u|2,ωK

≤ C|||uI − uh|||ωK
+ ChK |u|2,ωK

.

This completes the proof. �

Lemma 3.1 only gives ‖σh−Πhσ‖0,Ω = O(h). We need a stronger version of
Lemma 3.1 in order to derive the super-closeness. For this purpose we assume
that the triangulation Th satisfies Condition (α, σ) introduced in [22]: there
exists a partition Th = T1,h ∪ T2,h and positive constants α, σ such that

(A1) every two adjacent elements of T1,h form an O(h1+α) parallelogram
(i.e., the lengths of any two opposite edges differ only by O(h1+α));

(A2)
∑

K∈T2,h
|K| = O(hσ), where |K| denotes the area of K.

Let Ω1,h =
⋃

K∈T1,h
K and define a subset of T1,h by

T0,h = {K ∈ T1,h : ωK ⊂ Ω1,h and B(K) ⊂ Ω},

where B(K) is a ball of radius 3h containing ωK . Note that we have

(10)
∑

K∈Th\T0,h

|K| = O(hmin(σ,1))

by the assumption (A2).

Lemma 3.2. Assume that u ∈ H3(Ω). Then there exists a constant C > 0
such that for every K ∈ T0,h,

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

≤ C|||uh − uI |||ωK
+ Ch

1+min(α,1)
K ‖u‖3,B(K).
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Proof. Let P 0
2 (K) be the space of quadratic polynomials on K that vanish at

the vertices of K and let φK ∈ P 0
2 (K) be the solution of the local problem

(11) BK(φK , v) = (f, v)K −BK(uh, v) +

∫

∂K

gKv ds ∀v ∈ P 0
2 (K).

The following estimate is given in (6.22) of [17]

(12) |||e − φK |||K ≤ C|||uh − uI |||ωK
+ Ch

1+min(α,1)
K ‖u‖3,B(K)

for every K ∈ T0,h. This will be used at the last step of the proof.
Substituting f = −∆u+ cu in (11) and then integrating by parts, we obtain

for v ∈ P 0
2 (K)

BK(φK , v) = BK(u − uh, v) +

∫

∂K

(

gK −
∂u

∂nK

)

v ds,

and hence

(13)

∫

∂K

(

gK −Q1
∂u

∂nK

)

v ds = BK(φK −e, v)+

∫

∂K

(

∂u

∂nK
−Q1

∂u

∂nK

)

v ds,

where Q1w|γ is the L2 projection of w|γ into P1(γ) for γ ∈ EK .
Let θγ ∈ P 0

2 (K) be such that θγ(mγ) = 1 and θγ |∂K\γ ≡ 0, where mγ is the
midpoint of γ ∈ EK , and take v = θγ in (13). By the Simpson and midpoint
rules, the left-hand side of (13) becomes

∫

∂K

(

gK −Q1
∂u

∂nK

)

θγ ds =
2

3
|γ|

(

gK −Q1
∂u

∂nK

)

(mγ)

=
2

3

∫

γ

(

gK −
∂u

∂nK

)

ds,

where |γ| denotes the length of γ. To bound the right-hand side of (13), we
employ the estimates

|||θγ |||K + h
−1/2
K ‖θγ‖0,γ ≤ C, ‖w −Q1w‖0,γ ≤ Ch

3/2
K ‖w‖2,K

to obtain

|BK(φK − e, θγ)| ≤ C|||e − φK |||K ,
∣

∣

∣

∣

∫

∂K

(

∂u

∂nK
−Q1

∂u

∂nK

)

θγ ds

∣

∣

∣

∣

≤ Ch2K‖u‖3,K.

Consequently, it follows that
∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

≤ C|||e − φK |||K + Ch2K‖u‖3,K .

The proof is done by applying the estimate (12) and summing over γ ∈ EK . �

Under Condition (α, σ) on the triangulation Th, the following global super-
convergence result was derived in [22]

(14) |||uh − uI |||Ω ≤ Ch1+ρ(‖u‖3,Ω + |u|2,∞,Ω)
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with ρ = min(α, σ2 ,
1
2 ). Using this result, we are now able to derive the main

result of this section.

Theorem 3.3. Assume that the triangulation Th satisfies Condition (α, σ) and
u ∈ H3(Ω) ∩W 2,∞(Ω). Then there exists a constant C > 0 such that

‖σh −Πhσ‖0,Ω ≤ Ch1+ρ(‖u‖3,Ω + |u|2,∞,Ω)

with ρ = min(α, σ2 ,
1
2 ).

Proof. At the beginning of this section, we observed that

‖σh −Πhσ‖
2
0,Ω ≤ C

∑

K∈Th

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

2

.

The sum over K ∈ Th is split into two sums over K ∈ T0,h and over the
remaining elements. Lemma 3.2 yields the following bound for the first sum

∑

K∈T0,h

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

2

≤ C|||uh − uI |||
2
Ω + Ch2(1+min(α,1))‖u‖23,Ω,

while Lemma 3.1 yields

∑

K∈Th\T0,h

∑

γ∈EK

∣

∣

∣

∣

∫

γ

(

gK −
∂u

∂nK

)

ds

∣

∣

∣

∣

2

≤ C|||uh − uI |||
2
Ω +

∑

K∈Th\T0,h

Ch2K |u|22,ωK
.

Furthermore, we can obtain by (10)

∑

K∈Th\T0,h

Ch2K |u|22,ωK
≤ Ch2

(

∑

K∈Th\T0,h

|ωK |

)

|u|22,∞,Ω ≤ Ch2+min(σ,1)|u|22,∞,Ω.

The proof is completed by collecting the results above and invoking (14). �

Remark 3.4. Theorem 3.3 requires the regularity of u up to the boundary ∂Ω.
For subdomains Ω0 ⊂⊂ Ω1 ⊂⊂ Ω with Ω1 ⊂ Ω1,h, we can derive an interior
estimate analogous to Theorem 4.6 of [17] for h small enough

‖σh −Πhσ‖0,Ω0
≤ C(Ω0,Ω1)

{

h1+ρ(‖u‖3,Ω1
+ |u|2,∞,Ω1

) + ‖u− uh‖0,Ω1

}

under the interior regularity u ∈ H3(Ω1) ∩W 2,∞(Ω1).

4. Postprocessing and asymptotic exactness

To improve the guaranteed error bound (8), we consider the following post-
processing scheme

(15) min
ϕh∈P 0

2

‖σh + curlϕh −∇uh‖0,Ω

with the space of trial functions ϕh chosen as

P 0
2 := {ϕh ∈ H1(Ω) : ϕh|K ∈ P 0

2 (K) for K ∈ Th and ϕh|γ = 0 for γ ∈ EN}.
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It is easy to verify that (15) is reduced to the following variational problem:
find ψh ∈ P 0

2 such that

(16) (curlψh, curlϕh)Ω = −(σh −∇uh, curlϕh)Ω ∀ϕh ∈ P 0
2 .

The same scheme was also considered in [8, 10, 20] but with global and local
trial function spaces different from our choice P 0

2 .
The advantage of employing the global quadratic space P 0

2 in (15) is two-fold.
Firstly, the global matrix system arising from (16) is not only symmetric and
positive definite but also well-conditioned (at least on quasi-uniform meshes)
because it is locally equivalent to the scaled mass matrix by the inequalities

c1‖ϕh‖0,K ≤ hK‖ curlϕh‖0,K ≤ c2‖ϕh‖0,K ∀ϕh ∈ P 0
2 (K).

Thus the problem (16) can be efficiently solved by the conjugate gradient
method even without any preconditioning. Numerical results indeed confirm
that significant improvement on the error bound can be obtained with only
a few cg iterations. Secondly, it will be shown in the following theorem that
σh + curlψh ∈ BDM1 converges to σ = ∇u at a higher rate than ∇uh under
the conditions of Theorem 3.3.

Recall that the following assumptions were made on the boundary data: uD
is continuous and piecewise linear over ED and gN is piecewise constant over
EN , so that

uh|ΓD
= uD, Π1

hσ · n|ΓN
= Πhσ · n|ΓN

= σh · n|ΓN
= gN .

More general data entail only higher order data oscillations of uD and gN and
do not affect subsequent results if uD and gN are piecewise smooth.

Lemma 4.1. Let ψh ∈ P 0
2 be the solution of (16). Then ψh is also the solution

of the following minimization problem

(17) min
ϕh∈P 0

2

‖σh + curlϕh − σ‖0,Ω.

Proof. Using integration by parts, we obtain for all ϕ ∈ P 0
2

(∇(u − uh), curlϕh)Ω =

∫

∂Ω

(u− uh) curlϕh · n ds = 0.

The equation (16) then becomes

(curlψh, curlϕh)Ω = −(σh −∇u, curlϕh)Ω ∀ϕh ∈ P 0
2

which is equivalent to the minimization problem (17). �

Theorem 4.2. Under the assumptions of Theorem 3.3, there exists a constant

C > 0 such that

‖σh + curlψh − σ‖0,Ω ≤ Ch1+ρ(‖u‖3,Ω + |u|2,∞,Ω)

with ρ = min(α, σ2 ,
1
2 ).



900 KWANG-YEON KIM

Proof. Because div(Π1
hσ −Πhσ) = 0, we have

(Π1
h −Πh)σ = curlϕh

for some continuous piecewise quadratic function ϕh. Moreover, we may assume
that ϕh ∈ P 0

2 , since
∫

γ

∂ϕh

∂tγ
ds =

∫

γ

(Π1
hσ −Πhσ) · nγ ds = 0 ∀γ ∈ Eh

and
∂ϕh

∂tγ
= (Π1

hσ −Πhσ) · nγ = 0 ∀γ ∈ EN ,

where ∂w
∂tγ

denotes the tangential derivative of w along γ. Therefore it follows

by Lemma 4.1 and Theorem 3.3 that

‖σh + curlψh − σ‖0,Ω ≤ ‖σh + curlϕh − σ‖0,Ω

≤ ‖σh −Πhσ‖0,Ω + ‖Π1
hσ − σ‖0,Ω

≤ Ch1+ρ(‖u‖3,Ω + |u|2,∞,Ω) + Ch2‖u‖3,Ω,

which proves the desired result. �

Obviously, σh + curlψh has continuous normal components across edges of
Th and satisfies the local conservation law (7), so that the following guaranteed

error bound holds

|||u − uh|||Ω ≤ η :=

{

∑

K∈Th

(

‖σh + curlψh −∇uh‖0,K

+
hK
π

‖ divσh + f − cuh‖0,K

)2}1/2

.

Using Theorem 4.2, we are now able to establish that the error estimator η is
asymptotically exact when the triangulation Th satisfies Condition (α, σ) and
the solution u is regular enough.

Theorem 4.3. Under the assumptions of Theorem 3.3, we have

‖∇(u− uh)‖0,Ω = η +O(h1+ρ)

with ρ = min(α, σ2 ,
1
2 ). Moreover, it holds that

∣

∣

∣

∣

η

|||u− uh|||Ω
− 1

∣

∣

∣

∣

= O(hmin(ρ,ǫ)),

provided that

‖∇(u− uh)‖0,Ω ≥ Ch, ‖c1/2(u− uh)‖0,Ω ≤ Ch1+ǫ

for some C > 0 and ǫ > 0.
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Proof. For the first contribution of η, Theorem 4.2 gives
∣

∣‖∇(u− uh)‖0,Ω − ‖σh + curlψh −∇uh‖0,Ω
∣

∣

≤ ‖∇(u− uh)− (σh + curlψh −∇uh)‖0,Ω ≤ Ch1+ρ.

Moreover, the second contribution is of order O(h2) if f and c are locally
smooth, because the local conservation law (7) gives

hK
π

‖ divσh + f − cuh‖0,K =
hK
π

‖f − cuh − (f − cuh)K‖0,K = O(h2K),

where the Poincaré inequality ‖v− vK‖0,K ≤ ChK‖∇v‖0,K is used with vK =
1

|K|(v, 1)K . This proves the first result.

By the first result and the assumption on ‖c1/2(u− uh)‖0,Ω, it follows that

|||u − uh|||Ω = η +O(h1+min(ρ,ǫ))

and thus
∣

∣

∣

∣

η

|||u − uh|||Ω
− 1

∣

∣

∣

∣

≤
Ch1+min(ρ,ǫ)

h
= Chmin(ρ,ǫ),

which is exactly the second result. �

Remark 4.4. The postprocessing scheme (15) was fully discussed in [8], but
unlike ours, the trial functions were continuous piecewise linear polynomials on
red-refined triangulations. Numerical results there showed that σh given in [7]
and two red-refinements of triangulations along with 3 cg iterations for solving
(16) is particularly effective. However, asymptotic exactness is reached only
through successive red refinements.

Remark 4.5. The choice P 0
2 in the postprocessing scheme (15) is based on

the hierarchical splitting BDM1 = RT0 + curlP 0
2 . In view of the minimization

problem (17), the error estimator η has a very similar concept to the hierarchical
error estimator studied in [6, 9, 18].

On the other hand, the minimization problem (17) over the full space of
continuous piecewise quadratic functions ϕh is the same as the BDM1 mixed
finite element method

min
τh∈BDM1

‖τh − σ‖0,Ω subject to the constraint div τh = divσh.

This clearly provides a better vector approximation than σh + curlψh but at
a higher computational cost.

5. Numerical results

In this section we report some numerical results to confirm the theoretical
results of the preceding section and demonstrate the performance of the post-
processing scheme (15). Two examples are considered below for the Poisson
equation with the homogeneous Dirichlet condition

−∆u = f in Ω and u = 0 on ∂Ω.
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Figure 1. O(h1.2)-perturbations of the uniform triangular
meshes with the horizontal sizes h = 1

4 ,
1
8 ,

1
16 for Example 1.

The solution u is smooth in the first example and has a corner singularity in
the second example.

The matrix system (16) is approximately solved by applying the unprecon-
ditioned conjugate gradient method with the zero starting vector. We will
compare five error estimators computed with varying numbers of iterations.
The first one is obtained by setting ψh = 0 (i.e., no postprocessing), three are
obtained by performing fixed numbers of iterations, 1, 3, 5, and the last one is
obtained by continuing the iteration until the relative residual norm is reduced
to 10−10. These five error estimators will be denoted by ηi for i = 0, 1, 3, 5,∞.

Example 1. The domain is the unit square Ω = (0, 1)2 on which the true
solution is given by

u(x, y) = sin(2πx)(1 − cos(2πy))

with the right-hand side f = −∆u. As the solution u is smooth, we compute
the finite element solutions on a sequence of quasi-uniform meshes generated
by perturbing every interior vertex (x, y) of the uniform triangular meshes with
the horizontal sizes h = 1

2m (2 ≤ m ≤ 10) by (δx, δy), where

δx = δy = 0.5h1.2 sin(100π2xy).

These meshes clearly satisfy Condition (α, σ). Three meshes corresponding to
the uniform ones with h = 1

4 ,
1
8 ,

1
16 are shown in Fig. 1.

Numerical results are reported in Fig. 2 which plots the effectivity indices

θi :=
ηi

‖∇(u− uh)‖0,Ω
(i = 0, 1, 3, 5,∞).

Recall that the subscript i refers to the number of cg iterations performed
when solving the matrix system (16), with i = ∞ meaning that the iteration
continues until the relative residual norm is reduced to 10−10. The actual error
‖∇(u− uh)‖0,Ω is calculated by

‖∇(u− uh)‖
2
0,Ω = ‖∇u‖20,Ω − ‖∇uh‖

2
0,Ω,
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Figure 2. Effectivity indices θi =
ηi

‖∇(u−uh)‖0,Ω
for Example 1.

where ‖∇u‖20,Ω = 4π2 is calculated analytically. For closer comparison we also

report the numerical values of θi on the final mesh with the mesh size h ≈ 1
210 :

θ0 = 1.225668, θ1 = 1.031096, θ3 = 1.004631,

θ5 = 1.002676, θ∞ = 1.002672.

It can be seen that even a few number of cg iterations significantly improves
the error estimator (more specifically, η5 and η∞ are indistinguishable) and
that η∞ (considered as solving exactly for ψh) seems asymptotically exact as
predicted by Theorem 4.3.

Example 2. In this example the problem is posed on the L-shaped domain
Ω = (−1, 1)2\([0, 1]×[−1, 0]) with the right-hand side f = 1. The true solution
u is unknown but the actual error ‖∇(u− uh)‖0,Ω is calculated by

‖∇(u− uh)‖
2
0,Ω = ‖∇u‖20,Ω − ‖∇uh‖

2
0,Ω,

where ‖∇u‖20,Ω = 0.214075802680976 is evaluated numerically (cf. [8]).
As the solution u has a singularity at the origin, we perform adaptive mesh

refinement starting with the initial mesh of six congruent triangles shown in
the left of Fig. 3. The middle and right figures display two intermediate meshes
generated by adaptive refinement. It is observed that the mesh refinement is
concentrated around the singularity of the solution.

In Fig. 4 we plot the effectivity indices θi for i = 0, 1, 3, 5,∞. The numerical
values of θi’s on the final adapted mesh are given by

θ0 = 1.304083, θ1 = 1.039047, θ3 = 1.003999,
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Figure 3. Initial mesh (left) and two intermediate meshes
(middle and right) generated by the adaptive algorithm for
Example 2.
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Figure 4. Effectivity indices θi =
ηi

‖∇(u−uh)‖0,Ω
for Example 2.

θ5 = 1.002506, θ∞ = 1.002474.

Note that the assumptions of Theorem 4.3 are violated; the solution u is not
regular enough and it is unclear whether the adapted meshes satisfy Condition
(α, σ). Nevertheless, we observe the same phenomena as in the first example:
(1) a few number of cg iterations are sufficient to significantly improve the error
estimator, and (2) θ∞ seems to approach one.
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