• Title/Summary/Keyword: Growth-strain method

Search Result 351, Processing Time 0.031 seconds

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure

  • Yang, Seung-Hak;Cho, Jin-Kook;Lee, Soon-Youl;Abanto, Oliver D.;Kim, Soo-Ki;Ghosh, Chiranjit;Lim, Joung-Soo;Hwang, Seong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1651-1658
    • /
    • 2013
  • Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans $465^T$ (99.6%). The optimal growth temperatures ($55^{\circ}C$), pH values (pH 7.0), and NaCl concentrations (1%) required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming.

Transformation of an Alkalin Protease Overproducer, Vibrio metschnikovii Strain RH530, and Improvement of Plasmid Stability by the par Locus

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;JIn, Chee-Hong;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.222-228
    • /
    • 2001
  • Vibrio metschnikovii strain RH530 is a non-pathogenic, industrially-important alkaline protease producer which has been isolated from wastewater. In this paper, we report on the transformation of this strain by using the method of electroporation. A field strength of $7.5\;kVcm^{-1}$ and $25\;{\mu}F$, and using a 0.2-cm cuvette, appeared to be the optimal conditions for electroporation of the cells with the recombinant pSBCm plasmid carrying the vapK alkaline protease gene and the ColE1 replicon. Cells were subjected to osmotic shock in order to remove extracelluar DNase, and adding 200 mM of sucrose to electroporation buffer cells showed an increased transformation efficiency. Maximum efficiency of transformation was obtained at an early exponential growth phase. Using all of the conditions mentioned above, we routinely obtained a transformation efficiency of more than $10^4{({\mu}g\;plasmid\;DNA)}^{-1}$. The stability of the plasmid pSBCm in V. metschnikovii RH530 was 25% after 18h of growth (27 generations) in the medium without antibiotic selection. The insertion of the par locus to the pSBCm increased the stability of the plasmid up to 42% without selective pressure. The increase in plasmid stability was accompanied by the increase in the productivity of alkaline protease in the recombinant V. metschnikovii strain RH530. Determining optimal conditions for the transformation of the industrially-important, nonpathogenic Vibrio strain, and the improvement of plasmid stability by introducing the par locus into the high copy number plasmid vector, will allow the development of procedures involved in the genetic manipulation of this strain, particularly for its use in the production of industrial enzymes such as alkaline protease.

  • PDF

Finite Element Analysis of Damage Evolution in Drawing of Hardening Viscoplastic Metals (변형경화성을 갖는 점소성재의 인발공정에서 결함성장의 유한요소해석)

  • 함승연;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.71-79
    • /
    • 1994
  • Strip drawing of strain-hardening, viscoplastic materials with damage is analyzed by a rigid plastic finite element method. A process model is formulated using two state variables, one for strain hardening from slip dominated plastic distortion and the other for damage from growth of microvoids. Application of the model to steady state drawing is given via implementation in a consistent penalty finite element formulation. The predicted density changes as a result of void growth are compared to those from experiments reported in the literature. The effects of drawing conditions such as drawing speed and die angle on the mechanical property changes are studied.

  • PDF

Improving Mycoplasma ovipneumoniae culture medium by a comparative transcriptome method

  • Wang, Xiaohui;Zhang, Wenguang;Hao, Yongqing
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.30.1-30.11
    • /
    • 2020
  • Mycoplasma ovipneumoniae (Mo) is difficult to culture, resulting in many difficulties in related research and application. Since nucleotide metabolism is a basic metabolism affects growth, this study conducted a "point-to-point" comparison of the corresponding growth phases between the Mo NM151 strain and the Mycoplasma mycoides subsp. capri (Mmc) PG3 strain. The results showed that the largest difference in nucleotide metabolism was found in the stationary phase. Nucleotide synthesis in PG3 was mostly de novo, while nucleotide synthesis in NM151 was primarily based on salvage synthesis. Compared with PG3, the missing reactions of NM151 referred to the synthesis of deoxythymine monophosphate. We proposed and validated a culture medium with added serine to fill this gap and prolong the stationary phase of NM151. This solved the problem of the fast death of Mo, which is significant for related research and application.

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria from a Sandbank (갯벌에서 분리한 3,4-Dichloroaniline 분해 미생물의 특성)

  • Kim, Young-Mog
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.275-281
    • /
    • 2006
  • The compound 3,4-dichloroaniline (DCA) is an aromatic amine used as an intermediate product in the synthesis of herbicides, azo-dyes and harmaceuticals. It is also a degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as active agent in the cosmetic industry. 3,4-DCA, however, is considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. A bacterium capable of growth on 3,4-DCA was isolated by dilution method from 3,4-DCA-containing enrichment culture. Finally, a strain, YM-14, capable of degrading efficiently 3,4-DCA was isolated from a sandbank. The isolated strain, YM-14 was identified to be Arthrobacter sp.. Fifty ppm 3,4-DCA in 1/10 LB media was completely degraded by the growth of Arthrobacter sp. YM-14 for 12 h at $30^{\circ}C$. The isolated strain is capable of growth on 3,4-DCA as sole carbon source and also able to degrade other chloroaniline compounds. Also, the isolated strain showed high level of catechol 1,2-dioxygenase activity by 3,4-DCA exposure. The catechol 1,2-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation.

  • PDF

Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of NasutitermesTermites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi

  • Fitriana, Yuyun;Tampubolon, Desi Apriani Teresa;Suharjo, Radix;Lestari, Puji;Swibawa, I Gede
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method (셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션)

  • Changkye Lee;Sundararajan Natarajan;Jurng-Jae Yee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.295-305
    • /
    • 2023
  • This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

A study on the measurement of plastic zone and crack growth length at the crack tip under cyclic loading using ESPI system

  • Kim, Kyung-Su;Kim, Ki-Sung;Shim, Chun-Sik
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.367-378
    • /
    • 2003
  • The magnitude of the plastic zone around the crack tip of DENT (Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI (Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment (ESPI System).

Growth and characterization of ZnSe/GaAs epilayer by hot-wall epitaxy method (Hot-Wal Epitaxy 방법에 의한 ZnSe/GaAs 박막 성장과 특성)

  • 정태수;강창훈;유평렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.302-307
    • /
    • 1999
  • We have grown a high quality ZnSe(100) epilayer on the GaAs(100) substrate by hot-wall epitaxy method. The FWHM value from double-crystal x-ray diffraction rocking curve and growth rate of the ZnSe epilayer grown under the optimal growth conditions were 195 arcsec and 0.03 $\mu \textrm m$/min, respectively. The $I_2^U$ and $I_2^L$ peaks, which split by strain due to lattice mismatch between substrate and epilayer, were measured from the photoluminescence experiment. And we found that the residual impurities in ZnSe epilayer were concerned with Al or CI elements from the calculated binding energy of donor impurity.

  • PDF