Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2022.0031

Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of NasutitermesTermites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi  

Fitriana, Yuyun (Department of Plant Protection, Faculty of Agriculture, University of Lampung)
Tampubolon, Desi Apriani Teresa (Department of Agrotechnology, Faculty of Agriculture, University of Lampung)
Suharjo, Radix (Department of Plant Protection, Faculty of Agriculture, University of Lampung)
Lestari, Puji (Department of Plant Protection, Faculty of Agriculture, University of Lampung)
Swibawa, I Gede (Department of Plant Protection, Faculty of Agriculture, University of Lampung)
Publication Information
The Plant Pathology Journal / v.38, no.5, 2022 , pp. 449-460 More about this Journal
Abstract
This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.
Keywords
antagonist of phytopathogenic fungi; Nasutitermes termites; symbiont bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S. and Sa, T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160:127-133.   DOI
2 Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V. and Barny, M. A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216.   DOI
3 Ryu, E. 1940. A simple method of differentiation between grampositive and gram-negative organism without staining. Kitasato Arch. Exp. Med. 17:58-63.
4 Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A. and Luna, V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasisregulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85:371-381.   DOI
5 Silhavy, T. J., Kahne, D. and Walker, S. 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:a000414.
6 Atanasova-Pancevska, N. and Kungulovski, D. 2018. In vitro potential of Paenibacillus alvei DZ-3 as a biocontrol agent against several phytopathogenic fungi. Biologija 64:65-72.
7 Berasategui, A., Shukla, S., Salem, H. and Kaltenpoth, M. 2016. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100:1567-1577.   DOI
8 Cardoza, Y. J., Klepzig, K. D. and Raffa, K. F. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31:636-645.   DOI
9 Butera, G., Ferraro, C., Alonzo, G., Colazza, S. and Quatrini, P. 2016. The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Ann. Microbiol. 66:253-260.   DOI
10 Cardoso, J. E. and Echandi, E. 1987. Biological control of Rhizoctonia root rot of snap bean with binucleate Rhizoctonialike fungi. Plant Dis. 71:167-170.   DOI
11 Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288.   DOI
12 Cohen, I., Ron, I. G. and Ben-Jacob, E. 2000. From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria. Physica A: Stat. Mech. Appl. 286:321-336.   DOI
13 Gurung, K., Wertheim, B. and Salles, J. F. 2019. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167:156-170.   DOI
14 Suharjo, R., Aeny, T. N., Hasanudin, U., Sukmaratri T., Krisno, R., Khoironi, T. and Safitri, D. A. 2018. Potential of endophytic bacteria as plant growth promoter and antagonist against pineapple-fungal plant pathogen in Indonesia. In: Proceeding of International Symposium on Innovative Crop Protection for Sustainable Agriculture, pp. 41-44. The United Graduate School of Agricultural Science, Gifu University, Japan.
15 Trakulnaleamsai, S., Hongoh, Y., Deevong, P. and Noparatnaraporn, N. 2004. Phylogenetic diversity of bacterial symbionts in the guts of wood-feeding termites. Kasetsart J. (Nat. Sci.). 38:45-51.
16 Juan-abgona, R. V., Katsuno, N., Kageyama, K. and Hyakumachi, M. 1996. Isolation and identification of hypovirulent Rhizoctonia spp. from soil. Plant Pathol. 45:896-904.   DOI
17 Kalaiselvi, P., Jayashree, R. and Poornima, R. 2019. Plant growth promoting Bacillus spp. and Paenibacillus alvei on the growth of Sesuvium portulacastrum for phytoremediation of salt affected soils. Int. J. Curr. Microbiol. Appl. Sci. 8:2847-2858.   DOI
18 Khayi, S., Cigna, J., Chong, T. M., Quetu-Laurent, A., Chan, K.-G., Helias, V. and Faure, D. 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 66:5379-5383.   DOI
19 Skowronek, M., Sajnaga, E., Pleszczynska, M., Kazimierczak, W., Lis, M. and Wiater, A. 2020. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes: isolation and molecular identification. Int. J. Mol. Sci. 21:580.
20 Evans, T. A., Forschler, B. T. and Grace, J. K. 2013. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58:455-474.   DOI
21 Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
22 Hugh, R. and Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol. 66:24-26.   DOI
23 Jinal, H. N., Gopi, K., Prittesh, P., Kartik, V. P. and Amaresan, N. 2019. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ. Sci. Pollut. Res. 26:32815-32823.   DOI
24 Gkizi, D., Gonzalez Gil, A., Pardal, A. J., Piquerez, S., Sergaki, C., Ntoukakis, V. and Tjamos, S. E. 2021. The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. J. Exp. Bot. 72:4565-4576.   DOI
25 Husseneder, C. 2010. Symbiosis in subterranean termites: a review of insights from molecular studies. Environ. Entomol. 39:378-388.   DOI
26 Ichielevich-Auster, M., Sneh, B., Koltin, Y. and Barash, I. 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103-112.   DOI
27 Kim, H.-S., Ma, B., Perna, N. T. and Charkowski, A. O. 2009. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strain. Appl. Environ. Microbiol. 75:4539-4549.   DOI
28 Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.   DOI
29 Lelliott, R. A., Billing, E. and Hayward, A. C. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470-489.   DOI
30 Moleleki, L. N., Onkendi, E. M., Mongae, A. and Kubheka, G. C. 2013. Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur. J. Plant Pathol. 135:279-288.   DOI
31 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. American Phytopathological Society Press, St. Paul, MN, USA. 373 pp.
32 De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H. and Whitman, W. B. 2009. Bergey's manual of systematic bacteriology. Vol. 3. The firmicutes. 2nd ed. Springer, New York, NY, USA. 1450 pp.
33 Hyodo, F., Inoue, T., Azuma, J.-I., Tayasu, I. and Abe, T. 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol. Biochem. 32:653-658.   DOI
34 Muniaraj, M., Dinesh, D. S., Sinha, P. K., Das, P. and Bhattacharya, S. K. 2008. Dual culture method to determine the relationship of gut bacteria of sandfly (Phlebotomus argentipes) with promastigotes of Leishmania donovani. J. Commun. Dis. 40:133-138.
35 Nishiyama, K. 1978. The tentative plan of simple identification method of plant pathogenic bacteria. Shokubutsu Boeki 32:283-288.
36 Passera, A., Rossato, M., Oliver, J. S., Battelli, G., Shahzad, G. I., Cosentino, E., Sage, J. M., Toffolatti, S. L., Lopatriello, G., Davis, J. R., Kaiser, M. D., Delledonne, M. and Casati, P. 2020. Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiol. Res. 244:126665.
37 Singh, R. K., Kumar, D. P., Solanki, M. K., Singh, P., Srivastva, A. K., Kumar, S., Kashyap, P. L., Saxena, A. K., Singhal, P. K. and Arora, D. K. 2013. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J. Basic Microbiol. 53:451-460.   DOI
38 Adeolu, M., Alnajar, S., Naushad, S. and Gupta, R. S. 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66:5575-5599.   DOI
39 Ahmad, F., Fouad, H., Liang, S.-Y., Hu, Y. and Mo, J.-C. 2021. Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. Insect Sci. 28:2-20.   DOI
40 Sneh, B., Yamoah, E. and Stewart, A. 2004. Hypovirulent Rhizoctonia spp. isolates from New Zealand soils protect radish seedlings against damping-off caused by R. solani. N. Z. Plant Prot. 57:54-58.
41 Suharjo, R., Oktaviana, H. A., Aeny, T. N., Ginting, C., Wardhana, R. A., Nugroho, A. and Ratdiana, R. 2021. Erwinia mallotivora is the causal agent of papaya bacterial crown rot disease in Lampung Timur, Indonesia. Plant Prot. Sci. 57:122-133.   DOI
42 Trivedi, P., Spann, T. and Wang, N. 2011. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 62:324-336.   DOI
43 Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.   DOI
44 Suharjo, R., Sawada, H. and Takikawa, Y. 2014. Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR-RFLP. J. Gen. Plant Pathol. 80:230-254.   DOI
45 Brune, A. 2013. Symbiotic associations between termites and prokaryotes. In: The prokaryotes: prokaryotic biology and symbiotic associations, eds. by E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson, pp. 545-577. Springer-Verlag, Berlin, Germany.
46 Ahmed, I., Yokota, A., Yamazoe, A. and Fujiwara, T. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57:1117-1125.   DOI
47 Antonopoulos, D. F., Tjamos, S. E., Antoniou, P. P., Rafeletos, P. and Tjamos, E. C. 2008. Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol. Control 46:166-170.   DOI