1 |
S.S. Hwang, Review of PWSCC and mitigation management strategies of Alloy 600 materials of PWRs, J. Nucl. Mater. 443 (2013)321-330,http://dx.doi.org/10.1016/j.jnucmat.2013.07.032.
DOI
|
2 |
B. Alexandreanu, O.K. Chopra, W.J. Shack, The stress corrosion cracking behavior of alloys 690 and 152 weld in a PWR environment, in: Proceedings of ASME PVP Conference, Chicago, IL, ASME, Conshohocken, PA, 2008, pp. 153-163.
|
3 |
K. Arioka, T. Yamada, T. Miyamoto, T. Terachi, Dependence of stress corrosion cracking of Alloy 690 on temperature, cold work and carbide precipitation-role of diffusion of vacancies at crack tip, Corrosion 67 (2011) 1-18.
|
4 |
D.J. Kim, H.P. Hong, S.S. Hwang, Susceptibility of Alloy 690 to stress corrosion cracking in caustic aqueous solutions, Nucl. Eng. Technol. 45 (2013) 67-72.
DOI
|
5 |
S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Role of grain boundary carbides in cracking behavior of Ni base Alloys, Nucl. Eng. Technol. 45 (2013) 73-80.
DOI
|
6 |
S. Bruemmer, M. Olszta, N. Overman, M. Toloczko, Microstructural effects on stress corrosion crack growth in cold-worked Alloy 690 tubing and plate materials, in: Proceedings of 16th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Tampa, FL, 2013.
|
7 |
T. Belytschko, T. Black, Elastic crack growth in finite element with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-620.
DOI
|
8 |
Y.S. Garud, A.R. McIlee, Intergranular stress corrosion cracking damage model: an approach and its development for Alloy 600 in high-purity water, Corrosion 42 (1986) 99-105.
DOI
|
9 |
N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131-150.
DOI
|
10 |
N. Sukumar, N. Mo€es, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack modeling, Int. J. Numer. Methods Eng. 48 (2000) 1549-1570.
DOI
|
11 |
J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng. 139 (1996) 289-314.
DOI
|
12 |
M. Stolarska, D.L. Chopp, N. Mo€es, T. Belytschko, Modeling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng. 51 (2001) 943-960.
DOI
|
13 |
ABAQUS User's Manual, ver. 6-13, Dassault Systemes, Auburn Hills, MI, 2013.
|
14 |
Y.S. Garud, R. Pathania, A simplified model for SCC initiation susceptibility in Alloy 600, with the influence of cold work layer and strength characteristics, in: Proceedings of 9th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, TMS, Warrendale, PA, 1999.
|
15 |
Y.S. Garud, A.R. McIlee, Application of the strain-rate damage model to simplified and statistical predictions of IGSCC, in: Proceedings of 7th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, National Association of Corrosion Engineers (NACE), Houston, TX, 1995.
|
16 |
Y.S. Garud, G.O. Ilevbare, An SCC initiation model: effects of cold-work in austenitic stainless steels in light water reactor environment, Int. J. Nucl. Energy Sci. Eng. 2 (2012) 79-87.
|
17 |
ASTM -647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book for ASTM Standards, ASTM, Conshohocken, PA, 2005.
|
18 |
US Nuclear Regulatory Commission, NUREG/CR-7137, Stress Corrosion Cracking in Nickel-Base Alloys 690 And 152 Weld in Simulated PWR Environment, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, 2009.
|