• Title/Summary/Keyword: Growth phase

Search Result 3,686, Processing Time 0.031 seconds

Mathematical Modeling with Cell Morphology and Its Application to Fed-batch Culture in Cephalosporium Fermentation (Cephalosporium 발효시 균체의 형태학적 측면을 고려한 수학적 모델링 및 유가식 배양에의 응용)

  • 김의용;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.521-535
    • /
    • 1991
  • A kinetic model incorporating cell morphology in cephalosporin C biosynthesis by Cephalosporium amemoniurn was developed. The double-substrate Double-substrate kinetic model was used to describe cell growth. Methionine controlled the rate of growth while glucose ultimately controlled the extent of growth. The changes in specific product formation rate were associated with morphologenesis, especially cell differentiation. To increase the productivity of cephalosporin C, the proposed model equations were applied to a fed-batch culture. The algorithm to optimize the fed-batch culture consists of two steps; cell growth was maximized in the growth phase and then cephalosporin C production was maximized in the production phase. The increase of about 33% in the cephalosporin C titre was obtained by the optimal feeding scheduling in comparison with that of batch culture.

  • PDF

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type IV

  • Kim, S.N.;Min, K.K.;Choi, I.H.;Kim, S.W.;Pyo, S.N.;Rhee, D.K.
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.173-177
    • /
    • 1996
  • The Pneumococcus, Streptococcus pneumoniae, has an ample polysaccharide (PS) capsule that is highly antigenic and is the main virulence factor of the organism. The capsular PS is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 4 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based medium were found to support luxuriant growth of pneumococcus type 4 at the same level. Therefore in this study, the Casitone based medium was used to study optimization of the culture condition because of BHI broth's high cost and complex nature. The phase of growth which accomodated maximum PS production was exponential phase. Concentrations of glucose greater than 0.8% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium, copper, and magnesium ions) had adverse effects on growth and PS production. On the other hand, low level aeration and supplementation of 3 mg/l concentration of asparagine, phenylalanine, or threonine were beneficial for increased PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

Nutritive Value of Kluyveromyces fragilis and Candida utilis As Feed for Aquaculture (양식 사료로서 Kluyveromyces fragilis와 Candida utilis의 영양가)

  • LEE Sang-Min;KIM Joong Kyun;KIM Tae Jin;MIN Jin Gi;PARK Heum Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.791-797
    • /
    • 1999
  • This study was conducted in order to evaluate nutritive values of yeasts (Kluyveromyces fragilis and Candida utilis) according to growth stages (early log phase, log phase, stationary phase and death phase) and chemical treatment of their cell wall, Proximate, amino acids, fatty acids and nucleotides composition of the yeast samples was determined. Crude protein content was high in K. fragilis ($48\~59\%$) compared to C. utilis ($26\~43\%$). Crude lipid and fiber contents of the yeasts were below than $1.6\%$ and $3.3\%$, respectively. Conposition of aspartic acid, glycine, proline, leucine, Iysine and valine of K. fragilis were higher than those of C. utilis, and glutamic acid and arginine of C. utilis were higher than those of K. fragilis. Proximate and amino acids composition was not siginificantly influenced by growth stage of the yeasts. Major fatty acids of the yeasts in all growth stages were $C_{10-18}$. $C_{16-18}$ contents were relatively high in the early log or log phase and $C_{10-12}$ contents were relatively high in the stationary or death phase. However, n-3 highly unasturated fatty acids (C$\ge$20) in the all growth stages were not observed. This result indicated that these yeast strains could not be adequate as a dietary lipid source for marine fish. Composition of nucleotides and their related compounds (ATP ADP AMP, IMP and inosine) in the early log phase yeasts were lower than those in the log, stationary and death phase yeasts.

  • PDF

Amorphous Cr-Ti Texture-inducing Layer Underlying (002) Textured bcc-Cr alloy Seed Layer for FePt-C Based Heat-assisted Magnetic Recording Media

  • Jeon, Seong-Jae;Hinata, Shintaro;Saito, Shin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • $Cr_{100-x}Ti_x$ amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented $L1_0$ FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-$Cr_{80}Mn_{20}$ seed layer (bcc-SL). As-deposited TILs showed the amorphous phase in Ti content of $30{\leq}x(at%){\leq}75$. Particularly, films with $40{\leq}x{\leq}60$ kept the amorphous phase against the heat treatment over $600^{\circ}C$. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs ($40{\leq}x{\leq}70$), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) diffraction (FWHM) and a grain diameter of bcc-SL indicated that while the development of the lateral growth for bcc-SL grain reduces FWHM, crystallization of amorphous TILs hinders FWHM. $L1_0$ FePt-C granular films were fabricated under the substrate heating process over $600^{\circ}C$ with having different FWHM of bcc-SL. Hysteresis loops showed that squareness ($M_r/M_s$) of the films increased from 0.87 to 0.95 when FWHM of bcc-SL decreased from $13.7^{\circ}$ to $3.8^{\circ}$. It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.

Global Regulation of Gene Expression in the Human Gastric Pathogen Helicobacter pylori in Response to Aerobic Oxygen Tension Under a High Carbon Dioxide Level

  • Park, Shin Ae;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.451-458
    • /
    • 2013
  • The human gastric pathogen Helicobacter pylori (Hp) has been considered a microaerophile. However, we recently reported that, when supplied with 10% $CO_2$, Hp growth is stimulated by an atmospheric level of $O_2$, suggesting that Hp is a capnophilic aerobe. In this study, we investigated the effects of aerobic $O_2$ tension on Hp cells by comparing gene expression profiles of cultures grown under microaerobic and aerobic conditions in the presence of 10% $CO_2$. The results showed that overall differences in gene expression in Hp cells grown under the two $O_2$ conditions were predominantly growth-phase-dependent. At 6 h, numerous genes were down-regulated under the aerobic condition, accounting for our previous observation that Hp growth was retarded under this condition. At 36 h, however, diverse groups of genes involved in energy metabolism, cellular processes, transport, and cell envelope synthesis were highly up- or down-regulated under the aerobic condition, indicating a progression of the cultures from the log phase to the stationary phase. The expression of several oxidative stress-associated genes including tagD, katA, and rocF was induced in response to aerobic $O_2$ level, whereas trxA, trxB, and ahpC remained unchanged. Altogether, these data demonstrate that aerobic $O_2$ tension is not detrimental to Hp cells but stimulates Hp growth, supporting our previous finding that Hp may be an aerobic bacterium that requires a high $CO_2$ level for its growth.

A study on the growth morphology of AlN single crystal according to the change in temperature using HVPE method (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 온도 변화에 따른 AlN 단 결정의 성장 형상에 관한 연구)

  • Seung Min Kang;Gyong-Phil Yin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.36-39
    • /
    • 2024
  • As interest in power semiconductors is growing recently, research on device design and application using light energy gap materials such as SiC and GaN is being actively conducted. Because AlN single crystals have a larger energy gap than the above mentioned materials, research on high-power devices is also in progress, but commercialized wafers have not yet been reported, so research is needed. In this study, we applied the HVPE (Hydride vapor phase epitaxy) method to produce AlN single crystals and attempted to obtain bulk single crystals using our own manufacturing equipment. To this end, we would like to report the results of securing the growth conditions for single crystals. we would like to report on the change in the shape of the grown crystal according to the change in temperature.

Transient Liquid Phase Bonding with Liquid Phase Sintered Insert Metals (액상소결삽입재를 이용한 천이액상접합에 관한 연구)

  • 권영순;석명진;김지순;김환태;문진수
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.258-267
    • /
    • 2001
  • In this work, the conventional transient liquid phase(TLP) bonding was modified. An attempt was made of using a liquid phase sintered alloy, which will be a liquid phase coexisting with a solid phase at the bonding temperature, as an interlayer for bonding metals. With an aim of revealing the fundamental features of this modified TLP bonding, the kinetics concerned with the growth of solid particles and the isothermal solidification process in Fe-1.16wt%B and Fe-4.5wt%P interlayers for the bonding pure iron, as well as the morphological change of the solid particle, were investigated.

  • PDF

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate (HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성)

  • Hong, S.H.;Jeon, H.S.;Han, Y.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Hwang, S.L.;Ha, H.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2009
  • In this paper, a selective area growth (SAG) of a GaN/AlGaN double heterostructure (DH) has been performed on r-plane sapphire substrate by using the mixed-source hydride vapor phase epitaxy (HVPE) with multi-sliding boat system. The SAG-GaN/AlGaN DH consists of GaN buffer layer, Te-doped AlGaN n-cladding layer, GaN active layer, Mg-doped AlGaN p-cladding layer, and Mg-doped GaN p-capping layer. The electroluminescence (EL) characteristics show an emission peak of wavelength, 439 nm with a full width at half maximum (FWHM) of approximately 0.64 eV at 20 mA. The I-V measurements show that the turn-on voltage of the SAG-GaN/AlGaN DH is 3.4 V at room temperature. We found that the mixed-source HVPE method with a multi-sliding boat system was one of promising growth methods for III-Nitride LEDs.

Effects of Dietary Exogenous Hydrophilic Emulsifier Supplementation on Growth Performance and Carcass Traits in Broilers

  • Choi, Hyo Sim;Hong, Jin Su;Lee, Geon Il;Kim, Yoo Yong
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • The effects of dietary exogenous hydrophilic emulsifiers on the growth, nutrient digestibility, and carcass characteristics of broilers were evaluated. A total of 200 one-day-old broilers (Ross 308) were allotted to one of four treatment groups in a randomized complete block design in five replicates with 10 birds per pen during a 5-week growth experimental period. Birds were fed a corn-soybean meal-based diet with or without the addition of 0.025, 0.050, or 0.075% exogenous hydrophilic emulsifiers. The diets contained 3,025 and 3,075 metabolizable energy/kg for Phases 1 and 2, respectively. For each phase and the overall experimental period, body weight gain (linear, P<0.05) and feed conversion ratio (linear, P<0.05) improved in proportion to the dietary exogenous hydrophilic emulsifier level, while the average daily feed intake was not affected by dietary treatment. Improvement in growth performance by dietary treatments was observed during the last two weeks rather than the first three weeks of the growth phase. In carcass traits, abdominal fat content increased as dietary exogenous hydrophilic emulsifier level increased (linear, P<0.05), whereas dietary emulsifier level did not affect the relative weight of the liver, breast, and leg muscles. In conclusion, addition of dietary exogenous hydrophilic emulsifiers from 0 to 0.075% in broiler diets improved the growth rate and feed efficiency of broilers without any deleterious effects on nutrient digestibility, although a corn-soybean meal-based diet had less energy content (3,025 and 3,075 metabolizable energy/kg) for 0-3 weeks and 3-5 weeks, respectively.