Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09064

Global Regulation of Gene Expression in the Human Gastric Pathogen Helicobacter pylori in Response to Aerobic Oxygen Tension Under a High Carbon Dioxide Level  

Park, Shin Ae (Department of Bioscience and Biotechnology, Sejong University)
Lee, Na Gyong (Department of Bioscience and Biotechnology, Sejong University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 451-458 More about this Journal
Abstract
The human gastric pathogen Helicobacter pylori (Hp) has been considered a microaerophile. However, we recently reported that, when supplied with 10% $CO_2$, Hp growth is stimulated by an atmospheric level of $O_2$, suggesting that Hp is a capnophilic aerobe. In this study, we investigated the effects of aerobic $O_2$ tension on Hp cells by comparing gene expression profiles of cultures grown under microaerobic and aerobic conditions in the presence of 10% $CO_2$. The results showed that overall differences in gene expression in Hp cells grown under the two $O_2$ conditions were predominantly growth-phase-dependent. At 6 h, numerous genes were down-regulated under the aerobic condition, accounting for our previous observation that Hp growth was retarded under this condition. At 36 h, however, diverse groups of genes involved in energy metabolism, cellular processes, transport, and cell envelope synthesis were highly up- or down-regulated under the aerobic condition, indicating a progression of the cultures from the log phase to the stationary phase. The expression of several oxidative stress-associated genes including tagD, katA, and rocF was induced in response to aerobic $O_2$ level, whereas trxA, trxB, and ahpC remained unchanged. Altogether, these data demonstrate that aerobic $O_2$ tension is not detrimental to Hp cells but stimulates Hp growth, supporting our previous finding that Hp may be an aerobic bacterium that requires a high $CO_2$ level for its growth.
Keywords
Helicobacter pylori; DNA microarray analysis; aerobic oxygen tension; global gene regulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schellhorn, H. E. 1995. Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol. Lett. 131: 113-119.   DOI   ScienceOn
2 Smith, M. A., M. Finel, V. Korolik, and G. L. Mendz. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch. Microbiol. 174: 1-10.   DOI
3 Thompson, L. J., D. S. Merrell, B. A. Neilan, H. Mitchell, A. Lee, and S. Falkow. 2003. Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun.71: 2643-2655.   DOI   ScienceOn
4 Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D. Fleischmann, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-547.   DOI   ScienceOn
5 Zeng, H., G. Guo, X. H. Mao, W. D. Tong, and Q. M. Zou. 2008. Proteomic insights into Helicobacter pylori coccoid forms under oxidative stress. Curr. Microbiol. 57: 281-286.   DOI   ScienceOn
6 Tominaga, K., N. Hamasaki, T. Watanabe, T. Uchida, Y. Fujiwara, O. Takaishi, et al. 1999. Effect of culture conditions on morphological changes of Helicobacter pylori. J. Gastroenterol. 34 (Suppl 11): 28-31.   DOI   ScienceOn
7 Wang, G. and R. J. Maier. 2004. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect. Immun. 72: 1391-1396.   DOI
8 Wang, G., R. C. Conover, A. A. Olczak, P. Alamuri, M. K. Johnson, and R. J. Maier. 2005. Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori. Free Radical Res. 39: 1183-1191.   DOI   ScienceOn
9 Chalk, P. A., A. D. Roberts, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 140: 2085-2092.   DOI
10 Rupprecht, M. and K. H. Schleifer. 1977. Comparative immunological study of catalases in the genus Micrococcus. Arch. Microbiol. 114: 61-66.   DOI
11 Olczak, A. A., R. W. Seyler Jr., J. W. Olson, and R. J. Maier. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71: 580-583.   DOI
12 Olson, J. W. and R. J. Maier. 2002. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298: 1788-1790.   DOI   ScienceOn
13 Park, A. M., Q. Li, K. Nagata, T. Tamura, K. Shimono, E. F. Sato, and M. Inoue. 2004. Oxygen tension regulates reactive oxygen generation and mutation of Helicobacter pylori. Free Radical Biol. Med. 36: 1126-1133.   DOI   ScienceOn
14 Park, S. A., A. Ko, and N. G. Lee. 2011. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol. 11: 96-109.   DOI   ScienceOn
15 Pitson, S. M., G. L. Mendz, S. Srinivasan, and S. L. Hazell. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260: 258-267.   DOI   ScienceOn
16 Huang, C. H. and S. H. Chiou. 2011. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J. Med. Sci. 27: 544-553.
17 Chang, H. T., S. W. Marcelli, A. A. Davison, P. A. Chalk, R. K. Poole, and R. J. Miles. 1995. Kinetics of substrate oxidation by whole cells and cell membranes of Helicobacter pylori. FEMS Microbiol. Lett. 129: 33-38.   DOI   ScienceOn
18 Choi, Y. W., S. A. Park, H. W. Lee, D. S. Kim, and N. G. Lee. 2008. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8: 2665-2675.   DOI   ScienceOn
19 Chuang, M. H., M. S. Wu, J. T. Lin, and S. H. Chiou. 2005. Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics 5: 3895-3901.   DOI   ScienceOn
20 Donelli, G., P. Matarrese, C. Fiorentini, B. Dainelli, T. Taraborelli, E. Di Campli, et al. 1998. The effect of oxygen on the growth and cell morphology of Helicobacter pylori. FEMS Microbiol. Lett. 168: 9-15.   DOI
21 Eutsey, R., G. Wang, and R. J. Maier. 2007. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst) 6: 19-26.   DOI   ScienceOn
22 Gerrits, M. M., E. J. van der Wouden, D. A. Bax, A. A. van Zwet, A. H. van Vliet, A. de Jong, et al. 2004. Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J. Med. Microbiol. 53: 1123-1128.   DOI   ScienceOn
23 Iuchi, S. and L. Weiner. 1996. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J. Biochem. 120: 1055-1063.   DOI   ScienceOn
24 Kaakoush, N. O., C. Baar, J. Mackichan, P. Schmidt, E. M. Fox, S. C. Schuster, and G. L. Mendz. 2009. Insights into the molecular basis of the microaerophily of three Campylobacterales: A comparative study. Antonie Van Leeuwenhoek 96: 545-557.   DOI
25 Krieg, N. R. and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40: 107-130.   DOI   ScienceOn
26 Mendz, G. L., S. L. Hazell, and B. P. Burns. 1993. Glucose utilization and lactate production by Helicobacter pylori. J. Gen. Microbiol. 139: 3023-3028.   DOI
27 Marshall, B. J. and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.
28 Mendz, G. L. and S. L. Hazell. 1993. Fumarate catabolism in Helicobacter pylori. Biochem. Mol. Biol. Int. 31: 325-332.
29 Brown, L. M. 2000. Helicobacter pylori: Epidemiology and routes of transmission. Epidemiol. Rev. 22: 283-297.   DOI   ScienceOn
30 Olczak, A. A., G. Wang, and R. J. Maier. 2005. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors. Free Radical Res. 39: 1173-1182.   DOI   ScienceOn
31 Boneca, I. G., H. de Reuse, J. C. Epinat, M. Pupin, A. Labigne, and I. Moszer. 2003. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res. 31: 1704-1714.   DOI   ScienceOn
32 Bury-Mone, S., N. O. Kaakoush, C. Asencio, F. Megraud, M. Thibonnier, H. de Reuse, and G. L. Mendz. 2006. Helicobacter pylori a true microaerophile? Helicobacter 11: 296-303.   DOI   ScienceOn