• Title/Summary/Keyword: Growth associated protein-43 (GAP-43)

Search Result 13, Processing Time 0.024 seconds

Effects of Exercise on Axonal Regeneration and Growth-associated Protein (GAP­43) Expression Following Sciatic Nerve Injury in Rats (좌골신경 손상 후 운동이 쥐의 축색 재생과 성장관련 단백질(GAP-43) 발현에 미치는 영향)

  • Seo Tae-Beom;Yoon Sung-Jin;Kim Kyung-Tae;Yoon Jae-Suk;Yoon Jin-Hwan;Park Sung-Tae;Han In-Sun;Namgung Uk
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.486-491
    • /
    • 2005
  • Physical activity can improve sensorimotor recovery after peripheral nerve injury. Growth-associated protein 43 (GAP-43) is highly correlated with neuronal development and axonal regeneration and present in large quantities in the axonal growth cone. Using immunofluorescene staining and anterograde and retorgrade techniques, we identified enhanced axonal regrowth in distal stump of the sciatic nerve 3-14 days after crush injury in rats with treadmill training. We also carried out western blot to investigate GAP-43 protein expression in injured sciatic nerve. GAP-43 protein levels were highly induced in the injured sciatic nerve 3, 7 and 14 days compared with sedentary group. Thus, the present data provide a new evidence that treadmill training promoted axonal re-growth after injury and increased GAP-43 protein levels in the regenerating nerve.

Effects of Repeated Citalopram Treatments on Chronic Mild Stress-Induced Growth Associated Protein-43 mRNA Expression in Rat Hippocampus

  • Park, Sang-Ha;Choi, Song-Hyen;Lee, Ji-Min;Kang, Seung-Woo;Shin, You-Chan;Kim, Hyun-Ju;Kim, Hyun-Jung;Shin, Seung-Keon;Lee, Min-Soo;Shin, Kyung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Although growth associated protein-43 (GAP-43) is known to playa significant role in the regulation of axonal growth and the formation of new neuronal connections in the hippocampus, there is only a few studies on the effects of acute stress on GAP-43 mRNA expression in the hippocampus. Moreover, the effects of repeated citalopram treatment on chronic mild stress (CMS)-induced changes in GAP-43 mRNA expression in the hippocampus have not been explored before. To explore this question, male rats were exposed to acute immobilization stress or CMS. Also, citalopram was given prior to stress everyday during CMS procedures. Acute immobilization stress significantly increased GAP-43 mRNA expression in all subfields of the hippocampus, while CMS significantly decreased GAP-43 mRNA expression in the dentate granule cell layer (GCL). Repeated citalopram treatment decreased GAP-43 mRNA expression in the GCL compared with unstressed controls, but this decrease was not further potentiated by CMS exposure. Similar decreases in GAP-43 mRNA expression were observed in CA1, CA3 and CA4 areas of the hippocampus only after repeated citalopram treatment in CMS-exposed rats. This result indicates that GAP-43 mRNA expression in the hippocampus may differently respond to acute and chronic stress, and that repeated citalopram treatment does not change CMS-induced decreases in GAP-43 mRNA expression in the GCL.

Depressed Neuronal Growth Associated Protein (GAP)-43 Expression in the Small Intestines of Mice Experimentally Infected with $Neodiplostomum$ $seoulense$

  • Pyo, Kyoung-Ho;Kang, Eun-Young;Jung, Bong-Kwang;Moon, Jung-Ho;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.89-93
    • /
    • 2012
  • $Neodiplostomum$ $seoulense$ (Digenea: Neodiplostomidae) is an intestinal trematode that can cause severe mucosal pathology in the small intestines of mice and even mortality of the infected mice within 28 days after infection. We observed neuronal growth associated protein-43 (GAP-43) expression in the myenteric plexus of the small intestinal wall of $N.$ $seoulense$-infected mice until day 35 post-infection (PI). BALB/c mice were infected with 200 or 500 $N.$ $seoulense$ metacercariae isolated from naturally infected snakes and were killed every 7 days for immunohistochemical demonstration of GAP-43 in the small intestines. $N.$ $seoulense$-infected mice showed remarkable dilatation of intestinal loops compared with control mice through days 7-28 PI. Conversely, GAP-43 expression in the mucosal myenteric plexus was markedly ($P$<0.05) reduced in the small intestines of $N.$ $seoulense$-infected mice during days 7-28 PI and was slightly normalized at day 35 PI. From this study, it is evident that neuronal damage occurs in the intestinal mucosa of $N.$ $seoulense$-infected mice. However, the correlation between intestinal pathology, including the loop dilatation, and depressed GAP-43 expression remains to be elucidated.

The Combined Effects of Ginkgo Biloba Extracts and Aspirin on Viability of SK-N-MC, Neuroblastoma Cell Line in Hypoxia and Reperfusion Condition

  • Moon, Sung-Hwan;Lee, Yong-Jik;Park, Soo-Yong;Song, Kwan-Young;Kong, Min-Ho;Kim, Jung-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Objective: The purpose of this study is to investigate the combined effects of ginkgo biloba extract, ginkgolide A and B and aspirin on SK-N-MC, human neuroblastoma cell viability and mRNA expression of growth associated protein43 (GAP43), Microtubule-associated protein 2 (MAP2), B-cell lymphoma2 (Bcl2) and protein53 (p53) gene in hypoxia and reperfusion condition. Methods: SK-N-MC cells were cultured with Dulbecco's Modified Eagle's Medium (DMEM) media in $37^{\circ}C$, 5% $CO_2$ incubator. The cells were cultured for 8 hours in non-glucose media and hypoxic condition and for 12 hours in normal media and $O_2$ concentration. Cell survival rate was measured with Cell Counting Kit-8 (CCK-8) reagent assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to estimate mRNA levels of GAP43, MAP2, Bcl2, and p53 genes. Results: The ginkgolide A and B increased viable cell number decreased in hypoxic and reperfused condition. The co-treatment of ginkgolide B with aspirin also increased the number of viable cells, however, there was no additive effect. Although there was no increase of mRNA expression of GAP43, MAP2, and Bcl2 in SK-N-MC cells with individual treatment of ginkgolide A, B or aspirin in hypoxic and reperfused condition, the co-treatment of ginkgolide A or B with aspirin significantly increased GAP43 and Bcl2 mRNA levels. In MAP2, only the co-treatment of ginkgolide A and aspirin showed increasing effect. The mRNA expression of p53 had no change in all treating conditions. Conclusion: This study suggests that the combined treatments of Ginkgo biloba extracts and aspirin increase the regeneration of neuroblastoma cells injured by hypoxia and reperfusion.

Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

  • Kim, Han Bit;Yoo, Byung Sun
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.239-243
    • /
    • 2016
  • Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of $3{\mu}g/mL$, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis ($0.3{\sim}3{\mu}g/mL$) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to $3{\mu}g/mL$ propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells.

Increase of Synapsin I, Phosphosynapsin (ser-9), and GAP-43 in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Jung, Yeon-Joo;Huh, Pil-Woo;Park, Su-Jin;Park, Jung-Sun;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2004
  • The loss of neurons and synaptic contacts following cerebral ischemia may lead to a synaptic plastic modification, which may contribute to the functional recovery after a brain lesion. Using synapsin I and GAP-43 as markers, we investigated the neuronal cell death and the synaptic plastic modification in the rat hippocampus of a middle cerebral artery occlusion (MCAO) model. Cresyl violet staining revealed that neuronal cell damage occurred after 2 h of MCAO, which progressed during reperfusion for 2 weeks. The immunoreactivity of synapsin I and GAP-43 was increased in the stratum lucidum in the CA3 subfield as well as in the inner and outer molecular layers of dentate gyrus in the hippocampus at reperfusion for 2 weeks. The immunoreactivity of phosphosynapsin was increased in the stratum lucidum in the CA3 subfield during reperfusion for 1 week. Our data suggest that the increase in the synapsin I and GAP-43 immunoreactivity probably mediates either the functional adaptation of the neurons through reactive synaptogenesis from the pre-existing presynaptic nerve terminals or the structural remodeling of their axonal connections in the areas with ischemic loss of target cells. Furthermore, phosphosynapsin may play some role in the synaptic plastic adaptations before or during reactive synaptogenesis after the MCAO.

Growth Promoting Effects of Oriental Medicinal Drugs on Sciatic Nerve Regeneration in the Rat

  • Jo Hyun-Kyung;NamGung Uk;Seol In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1666-1672
    • /
    • 2005
  • Oriental medicinal drugs have a broad spectrum of clinical use for the cure of nervous system diseases including brain ischemic damages or neuropathies. Yet, specific drugs or drug components used in the oriental medicine in relation to none fiber regeneration are not known. In the present study, possible growth promoting effects of oriental medicinal drugs were investigated in the injured sciatic nerve system in the rat. By immunofluorescence staining, we found that Jahageo (JHG, Hominis placenta) increased Induction levels of axonal growth associated protein GAP-43 in the rat sciatic none. Small growth promoting activity was found in Golsebo (GSB, Drynariae rhizoma) and Baikhasuo (BHSO, Polygoni multiflori radix) drugs. JHG also increased cell cycle protein Cdc2 levels in the injured area of the sciatic nerves. Immunofluorescence staining indicated that induced Cdc2 protein was mostly localized in the Schwann cells in the injury area, implying that JHG activity might be related to increased Schwann cell proliferation during axonal regeneration. Moreover, levels of phospho-extracellular signal-regulated (ERK) pathway in the injured neNes were elevated by JHG treatment while levels of total ERK were unaltered. In vivo measurement of axonal regeneration using retrograde tracer showed that JHG, GSB and BHSO significantly enhanced Dil-labeled regenerating motor neurons compared with saline control. The present data suggest that oriental medicinal drugs such as JHG, GSB, and BHSO may be a useful target for developing specific drugs of axonal regeneration.

Effects of Oriental Medicinal Drugs on Axonal Regeneration in the Spinal Cord Neurons

  • An Joung-Jo;NamGung Uk;Seo In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1640-1646
    • /
    • 2005
  • An oriental medicinal drugs Jahageo (JHG, Hominis placenta) were examined to determine its effects on the responsiveness of central nervous system neurons after injury. We found that JHG was involved in neurite outgrowth of DRG sensory axons. JHG treatment also increased expression of axonal growth-associated protein GAP-43 in DRG sensory neurons after sciatic nerve injury and in the injured spinal cord. JHG treatment during the spinal cord injury increased induction levels of cell division cycle 2 (Cdc2) protein in DRG as well as in the spinal cord. Histochemical investigation showed that induced Cdc2 in the injured spinal cord was found in non-neuronal cells. These results suggest that JHG regulates activities of non-neuronal cells such as oligodendrocyte and astrocyte in responses to spinal cord injury and protects neuronal responsiveness after axonal damage.

Effect of Improved Forelimb Sensorimotor Function on the Transcranial Direct Current Stimulation in a Focal Ischemic Brain Injury Rat Model (국소 허혈성 뇌손상 흰쥐 모델에서 경두개직류전기자극이 앞다리 운동감각 기능 증진에 미치는 효과)

  • Kim, Gi-Do;Sim, Ki-Cheol;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2011
  • This study was to investigate the effect of improve forelimb sensorimotor function and neurotrophic factor(GAP-43) expression when differing an application time of tDCS in ischemic brain injury rat model(pre, $1^{st}$, $7^{th}$, $14^{th}$). Focal ischemic brain injury was induced in 80 Sprague-Dawley rats through middle cerebral artery occlusion(MCAO) by 'Longa' method. And then experimental groups were randomly divided into four groups; GroupI: MCAO induction, GroupII: application of tDCS(10 min) after MCAO induction, GroupIII: application of tDCS(20 min) after MCAO induction, GroupIV: application of tDCS(30 min) after MCAO induction. Modified limb placing test and single pellet reaching test were performed to test forelimb sensorimotor function. And the histological examination was also observed through the immunohistochemistric response of GAP-43(growth-associated protein-43) in the cerebral cortex. In modified limb placing test, groupIII(p<0.05) showed significantly improve than the other groups on $14^{th}$). day. In single pellet reaching test, groupIII(p<0.01) and groupIV(p<0.05) significantly improved on $14^{th}$) day. And in immunohistochemistric response of GAP-43, group III showed significantly positive response than the other groups on $14^{th}$ day. These results suggest that the intensity(0.1 mA)/time(20 min) condition of tDCS application has a significant impact on the sensorimotor functional recovery in focal ischemic brain injury rat models.

Effects of PCB Congeners in Rodent Neuronal Cells in Culture

  • Kim, Sun-Young;Yang, Jae-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • We attempted to analyze the mechanism of polychlorinated biphenyl (PCB)-induced neurotoxicity and identify the target molecules in the neuronal cells for PCBs.Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old Sprague Dawley (SD) rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total protein kinase C (PKC) activity at phobol 12,13-dibutyrate ([$^3M$]PDBu) binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isozymes were immunoblotted with the selected monoclonal antibodies. PKC-${\alpha}$, ${\delta}$, and ε were activated with non-coplanar PCB exposure. Receptor for activated C kinase-1 (RACK-1), anchoring protein for activated PKC, was more induced with exposure to coplanar PCBs than non-coplanar PCBs. Reverse transcription PCR (RT-PCR) analysis showed induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA with non-coplanar PCBs. The results indicate that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. The present study demonstrated that non-coplanar PCBs are more neuroactive congeners than coplanar PCBs.