• Title/Summary/Keyword: Growth Potential

Search Result 4,749, Processing Time 0.034 seconds

Antibacterial Effects of Natural Essential Oils from Various Spices against Vibrio Species and Their Volatile Constituents (몇 가지 천연 향신료 정유의 Vibrio속 균주들에 대한 항균효과 및 그 휘발성 성분)

  • Yoo, Mi-Ji;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.438-443
    • /
    • 2006
  • Antibacterial effects of six volatile essential oils against Vibrio sp. were evaluated. Volatile components of essential oil were analyzed by gas chromatography and gas chromatography mass spectrometry. Ginger oil treatment inhibited growth of V. parahaemolyticus by 22.5-85.7%. Main volatile compounds of ginger oil were ${\beta}-bisabolene$ (35.19%, peak area) and ${\beta}-sesquiphellandrene$ (12.22%). V. parahaemolyticus was completely inhibited at 1,000 ppm by treatment with mustard oil. Tolerances of V. vulnificus 01 and 02 were twice higher than that of V. parahaemolyticus. Main volatile compound of mustard oil was allyl isothiocyanate (92.55%). Garlic oil treatment of 1,000 ppm inhibited growths of V. parahaemolyticus, V. vulnificus 01, and V. vulnificus 02 by 22.8, 14.6, and 32.9%, respectively. Main volatile compounds of garlic oil were dimethyl sulfide (49.39%) and methyl 2-propenyl disulfide (10.09%). Growth of V. vulnificus 02 was inhibited by 60.6-80.3% via treatment with bud, leaf, and whole oil of clove. Antibacterial activity of whole clove oil on V. vulnificus 02 was stronger than those of ginger, mustard, and garlic oil. Main volatile compounds were eugenol (83.33%) and ${\beta}-caryophyllene$ (7.47%) in clove bud, eugenol (87.46%) and ${\beta}-caryophyllene$ (10.03%) in clove leaf, and eugenol (86.04%) and ${\beta}-caryophyllene$ (9.71%) in whole clove. These results revealed essential oils from spices could be used as potential agents to inhibit Vibrio sp.

Effects of Cultivated Wild Panax ginseng Extract on the Proliferation, Differentiation and Mineralization of Osteoblastic MC3T3-E1 Cells (산양삼(cultivated wild Panax ginseng) 추출물이 조골세포 활성에 미치는 영향)

  • Seo, Hyun-Ju;Eo, Hyun Ji;Kim, Hyun Jun;Jeon, Kwon Seok;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • Panax ginseng C.A. Meyer (P. ginseng) is known to exert a wide range of pharmacological effects both in vitro and in vivo. Although studies on ginsenoside, antioxidant activity, and anticancer effect of the cultivated wild Panax ginseng (CWP) have been conducted, there is little research on the effect of CWP extract on bone metabolism. In this study, we investigated the potential anti-osteoporotic properties of CWP on the growth and differentiation of MC3T3-E1 cells. CWP significantly increased the viability and proliferation of MC3T3-E1 cells. CWP activated intracellular alkaline phosphatase (ALP) activity in MC3T3-E1 cells. In addition, CWP increased the mineralized nodules in MC3T3-E1 cells. Furthermore, CWP increased the expression of genes such as Runx2, ALP, OPN and OCN associated with osteoblast growth and differentiation in a dose-dependent manner.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts (열처리에 의한 케일 새싹의 기능성물질 축적)

  • Lee, Min-Jeong;Lim, Sooyeon;Kim, Jongkee;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.509-518
    • /
    • 2012
  • The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.

The Study of Genetic Diversity for Drought Tolerance in Maize (옥수수 한발 내성에 관한 유전적 다양성 조사)

  • Kim, Hyo Chul;Lee, Yong Ho;Kim, Kyung-Hee;Shin, Seungho;Song, Kitae;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.223-232
    • /
    • 2016
  • Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.

Effects on Growth and Yield of Korean Malting Barley Cultivars by Soil-borne Bymovirus Infection (맥류의 토양 전염성 Bymovirus의 감염이 국내 육성 맥주보리의 생육 및 수량에 미치는 영향)

  • Park, Jong-Chul;Kim, Mi-Jung;Lee, Eun-Sook;Park, Chul-Soo;Kang, Chun-Sik;Hyun, Jong-Nae;Lee, Jung-Joon;Kim, Tae-Soo;Kim, Ki-Jong
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • Viral diseases, especially Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) have been most serious in barley fields. In this study, we investigated the effect of different level of resistance to viral diseases on the plant growth and yield in malting barley. In diagnosis of virus infection, BaYMV and BaMMV were detected in 'Doosan 29' (susceptible), however, 'Jinyangbori' (moderate susceptible) and 'Hopumbori' (moderate) was infected by only BaYMV. Plant height was restrained about 8~29% in overwintered plant regeneration stage depending on the resistant of each cultivar. The culm length damaged also to 9~12% by BaYMV infection. The tiller numbers reduced to 10~14% in overwintering season, however, the head numbers in harvest season more decreased to 26~33%. Heading date was delayed to 3~3 days by the infection. In examination of yield components, 1,000 kernel weight and $\ell$ weight reduced according to culrivar's resistant degrees to 4.0~6.4% and 1.0~4.2%, respectively. The yield of abortive grain was doubled in BaYMV infection comparing to non-infested field. Three varieties tested in the non-infected field over two years were not significantly different for yield potential with ranges of 509kg~632kg/10a. However, significant yield reduction was observed in 'Saessalbori' and 'Baegdong' with ranges of 77~177kg/10a as compared to 'Hopumbori' (467 kg/10a) when tested in the virus-infected field. Yield potentials of these cultivars reduced by 26~43%, respectively, in the virus-infected field as compared to those in the non-infected field.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

A Study on the Impact of Employee's Person-Environment Fit and Information Systems Acceptance Factors on Performance: The Mediating Role of Social Capital (조직구성원의 개인-환경적합성과 정보시스템 수용요인이 성과에 미치는 영향에 관한 연구: 사회자본의 매개역할)

  • Heo, Myung-Sook;Cheon, Myun-Joong
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.1-42
    • /
    • 2009
  • In a knowledge-based society, a firm's intellectual capital represents the wealth of ideas and ability to innovate, which are indispensable elements for the future growth. Therefore, the intellectual capital is evidently recognized as the most valuable asset in the organization. Considered as intangible asset, intellectual capital is the basis based on which firms can foster their sustainable competitive advantage. One of the essential components of the intellectual capital is a social capital, indicating the firm's individual members' ability to build a firm's social networks. As such, social capital is a powerful concept necessary for understanding the emergence, growth, and functioning of network linkages. The more social capital a firm is equipped with, the more successfully it can establish new social networks. By providing a shared context for social interactions, social capital facilitates the creation of new linkages in the organizational setting. This concept of "person-environment fit" has long been prevalent in the management literature. The fit is grounded in the interaction theory of behavior. The interaction perspective has a fairly long theoretical tradition, beginning with proposition that behavior is a function of the person and environment. This view asserts that neither personal characteristics nor the situation alone adequately explains the variance in behavioral and attitudinal variables. Instead, the interaction of personal and situational variables accounts for the greatest variance. Accordingly, the person-environment fit is defined as the degree of congruence or match between personal and situational variables in producing significant selected outcomes. In addition, information systems acceptance factors enable organizations to build large electronic communities with huge knowledge resources. For example, the Intranet helps to build knowledge-based communities, which in turn increases employee communication and collaboration. It is vital since through active communication and collaborative efforts can employees build common basis for shared understandings that evolve into stronger relationships embedded with trust. To this aim, the electronic communication network allows the formation of social network to be more viable to rapid mobilization and assimilation of knowledge assets in the organizations. The purpose of this study is to investigate: (1) the impact of person-environment fit(person-job fit, person-person fit, person-group fit, person-organization fit) on social capital(network ties, trust, norm, shared language); (2) the impact of information systems acceptance factors(availability, perceived usefulness, perceived ease of use) on social capital; (3) the impact of social capital on personal performance(work performance, work satisfaction); and (4) the mediating role of social capital between person-environment fit and personal performance. In general, social capital is defined as the aggregated actual or collective potential resources which lead to the possession of a durable network. The concept of social capital was originally developed by sociologists for their analysis in social context. Recently, it has become an increasingly popular jargon used in the management literature in describing organizational phenomena outside the realm of transaction costs. Since both environmental factors and information systems acceptance factors affect the network of employee's relationships, this study proposes that these two factors have significant influence on the social capital of employees. The person-environment fit basically refers to the alignment between characteristics of people and their environments, thereby resulting in positive outcomes for both individuals and organizations. In addition, the information systems acceptance factors have rather direct influences on the social network of employees. Based on such theoretical framework, namely person-environment fit and social capital theory, we develop our research model and hypotheses. The results of data analysis, based on 458 employee cases are as follow: Firstly, both person-environment fit(person-job fit, person-person fit, person-group fit, person-organization fit) and information systems acceptance factors(availability perceived usefulness, perceived ease of use) significantly influence social capital(network ties, norm, shared language). In addition, person-environment fit is a stronger factor influencing social capital than information systems acceptance factors. Secondly, social capital is a significant factor in both work satisfaction and work performance. Finally, social capital partly plays a mediating role between person-environment fit and personal performance. Our findings suggest that it is vital for firms to understand the importance of environmental factors affecting social capital of employees and accordingly identify the importance of information systems acceptance factors in building formal and informal relationships of employees. Firms also need to reflect their recognition of the importance of social capital's mediating role in boosting personal performance. Some limitations arisen in the course of the research and suggestions for future research directions are also discussed.

Changes in Quality Characteristics of Wild Root Vegetables during Storage (전처리 근채류의 저장과정중의 품질평가)

  • Kwak, Soo-Jin;Park, Na-Yoon;Kim, Gi-Chang;Kim, Haeng-Ran;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1158-1167
    • /
    • 2012
  • During the peeling, cutting, and shredding of wild root vegetables, the surface is exposed to air. This results in a rapid deterioration in quality and an increase in the potential of contamination by microorganisms, both of which reduce the shelf-life of wild root vegetables in retail markets. Thus, in this study, the effects of various washing treatments on the quality of wild root vegetables, including lotus root, burdock root, and bellflower root, were investigated at 10 and $24^{\circ}C$. Lotus root, burdock root and bellflower root were washed with 0.2% acetic acid (AA), 0.2% citric acid (CA), 500 ppm acidified sodium chlorite (ASC), and tap water (TW), which was used as a control, and stored at $10^{\circ}C$ and $24^{\circ}C$. The changes in total plate counts, coliform groups, polyphenol oxidase (PPO) activity, color, pH, and exterior appearance of the samples were then evaluated. The pH and initial microbial contamination levels were reduced when the root vegetables were washed with AA, CA, and ASC. In particular, initial population levels of total plate counts and coliform groups were not detected in lotus root and burdock root that had been washed with ASC and their growth was significantly (p<0.05) inhibited during storage at 10 and $24^{\circ}C$ when compared to the control (TW). In addition, the polyphenol oxidase (PPO) activities of the root vegetables washed with AA, CA and ASC were lower than that of root vegetables washed with TW. ASC was determined to be the most effective treatment for preventing microbial growth, tissue softening, and the development of browning and an unpleasant smell. At $10^{\circ}C$, the overall qualities of the wild root vegetables were maintained longer when compared to $24^{\circ}C$.

Application of Liriope platyphylla, Ornamental Korean Native Plants, for Contaminated Soils in Urban Areas (도시 내 중금속 오염지의 관상식물로서 자생 맥문동(Liriope platyphylla)의 적용성 평가)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.81-87
    • /
    • 2014
  • Heavy metal pollution is a widespread global problem causing serious environmental concern. Heavy metals such as Cd, Pb, and Zn can induce toxicity in all organisms if the soil levels of contaminants reach critical values. The aim of the present study was to examine the application of Liriope platyphylla, an ornamental Korean native plant with great potential for contaminated soil in urban areas, to determine tolerance for Cd, Pb, and Zn. Plants were grown in amended artificial soil with Cd, Pb, and Zn at 0, 100, 250, and $500mg{\cdot}kg^{-1}$ for 7 months. The length of leaf, width of leaf, total leaf number, dead leaf number, new leaf number, chlorophyll contents, and ornamental value were monitored from May to August, during growth the period. The relative leaf length and leaf width displayed rapidly decreasing tendencies with an increasing Cd concentration beginning from 4 months after planting. The same decreasing tendency was observed in total leaf number, new leaf number, chlorophyll contents, and ornamental values showed a trend of Control> $Cd_{100}$ > $Cd_{250}$ > $Cd_{500}$. In Pb concentration treatments, the relative leaf length and leaf width were significantly lower in plants grown at $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ as compared to the Control, $100mg{\cdot}kg^{-1}$. The total leaf number, new leaf number, and dead leaf number did not show significant difference among treatments in Control and $Pb_{100}$ but chlorophyll contents and ornamental value decreased with increasing Pb supply concentration treatments. However, in Zn supply treatments, the relative leaf length was higher at $100mg{\cdot}kg^{-1}$ than the Control, $250mg{\cdot}kg^{-1}$, $500mg{\cdot}kg^{-1}$, but the relative leaf width decreased compared to the Control, $Zn_{100}$, $Zn_{250}$, and $Zn_{500}$. The total leaf number, dead leaf number, new leaf number, and ornamental value showed the lowest value in plants grown in $Zn_{500}$ treatment but no significant differences were found among other treatments.