• Title/Summary/Keyword: Grouting material injection

Search Result 79, Processing Time 0.03 seconds

Evaluation of the grouting in the sandy ground using bio injection material

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.739-752
    • /
    • 2017
  • This study was intended to evaluate the improved strength of the ground by applying the bio grouting method to a loose sandy ground. The injection material was prepared in the form of cement-like powder, with the bio injection material produced by microbial reactions. The grouting test was conducted under the conditions similar to the field where the bio injection material can be applied. In addition, the injection materials (cement and sodium silicate No. 3) used for Labile Waterglass (LW) method and the conventional grouting methodwere prepared through a two-solution one-step process. The injection into the specimens was done at a pressure of 150 kPa and then, with a bender element, their moduliof elasticity were measured on the 7th, 14th, 21st and 28th curingdays to analyze their strengths according to the duration of curing. It was confirmed that in all injection materials the moduli of elasticity increased over time. In particular, when 30% of the bio injection material was added to 100% cement, the modulus of elasticity tended to increase by about 15%. This confirmed that the applicability became higher when the bio injection material was used in place of the conventional sodium silicate.

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

Evaluation of the Groutability through Microcrack and Viscosity Measurement Methods for Grouting Materials (미세균열 그라우팅 주입성능 및 재료의 점도 측정방법 평가)

  • Jin, Hyun-Woo;Ryu, Byung-Hyun;Lee, Jang-Guen
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.23-34
    • /
    • 2017
  • In order to develop urban underground spaces, even microcracks should be reinforced. In this paper, the grouting injection performance for microcracks was investigated considering the viscosity and particle size of the grouting materials, injection pressure, and crack width. There are two types of typical grouting materials used for filling micro-cracks. One is a chemical liquid grouting material which is a solution type and the other is a cementitious grouting material which is a suspension type. The injection performance of the grouting materials for microcracks is generally influenced by the viscosity, and the injection performance of the cementitious grouting material is additionally affected by the particle size. From laboratory tests, the viscosity was calculated inversely to provide a suitable viscosity measurement method for each grouting material. The groutability ratio based on the relationship between the crack width and the particle size was evaluated to estimate the grouting feasibility of the cementitous grouting material through microcracks.

Characteristics and Applications of Acrylate Injection Material (아크릴레이트계 주입약액의 특성 및 적용)

  • 천병식;류동성;조산연;정성남;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.539-542
    • /
    • 1999
  • In this study, acrylate salt material of new chemical composition for injection grouting was prepared in the state of aqueous solution, and the chemical and physical properties of the material were investigated. The gelation time of the material was freely controllable through the control of added catalysts amount. As the viscosity of the material was very low (2∼3cps), its injection efficiency was expected to be very excellent. The variation of its viscosity plotted with the process of gelation revealed that the efficiency of its penetration into the ground soil was very excellent. The LD$\sub$50/ test on white mouse verified the toxicity of the material was very slight and substantially negligible. The grouting effect using the material was examined through field case histories.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Chun, Byung-Sik;Jung, Jong-Ju;Chung, Chang-Hee;Do, Kyung-Yang;Do, Jong-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.352-361
    • /
    • 2006
  • The grouting method is widely used in construction to reduce permeability and reinforce the ground. If the cement and grout material are not mixed well in the injection tip equipment, an opposite flow and Interception state of the chemical grouting can occur. McG method installs a special grouting device to allow better mixing of the grouting material and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS that lowers $Na_2O$ and thereby increases durability is developed by gel-forming reaction material. In this study, the seepage state and unconfined compressive strength of the injection material using the special injection tip equipment is tested. The results of laboratory and field tests clearly demonstrate that the strength increases and permeability decreases using the McG method.

  • PDF

A Study on the Injection Characters of The Back Side Grouting Method by a Model Test (모형실험을 통한 배면지수 그라우팅기법에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.175-182
    • /
    • 2002
  • The cement injection technology on the purpose of ground reinforcement and cut-off has been used in construction sites until now. However, recently it is applied to prevent leakage of underground structure. In this study, applicability of the back side waterproof grouting method was verified through performing field model tests and reviewing case histories. From the results of this study, injection shape of the back side waterproof grouting method was appeared to be root type, and waterproof effect by injection of cement grout material was excellent because grout material infiltrated into boundary between wall of structure and back side ground to be waterproof layer. Components influencing infiltration of injection material are type of soil and degree of compaction. For effective injection, injection pressure has to vary gradually from high pressure to low pessure and small quantity of injection material has to be injected for long times. Also, spacing of injection hole must be designed considering condition of back side ground, injection area, W/C ratio, the number of injection and injection pattern properly.

Estimation of the Anisotropic Material Properties of Rock Masses with Permeation Grouting (그라우팅 강화터널의 설계 특성치 산정에 관한 연구)

  • Lee, Jun Seok;Bang, Chun Seok;Choe, Il Yun;Eom, Ju Hwan
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.67-80
    • /
    • 1999
  • The Grout-reinforcement technique which is widely used during the excavation of a shallow or an endangered tunnel can be classified into a couple of groups according to the properties and injection methods of the grout. The reinforcement design will, therefore, take a different approach based on the grouting method under consideration. However, the injection procedure is mainly performed by the experience of the foreman rather than engineering judgement , specifically the permeation grouting through the rock joints and its reinforcement effect Is not fully under-stood during the design stage, In this study, the anisotropic material properties of the grout-reinforced rock masses are derived from the concept of composite materials and the effect of intact rock, vertical grouting and permeation grouting is, therefore, fully accounted for. Through the parametric studies on the characteristics of rock joints, intact rock and grouting materials, various case studies have been considered. The results, illustrated via the design charts, can be directly used during the reinforcement design.

  • PDF

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance (그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.23-31
    • /
    • 2016
  • Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.

A Study on the Grouting for the Underpinning of Open Caisson of Existing Bridge (기존 교량구조물의 유지관리를 위한 우물통 기초 보강주입에 관한 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • In this study, physical and engineering properties of ordinary portland cement and microcement were investigated to verify reinforcing effect of underpinning of open caisson foundation by using microcement grouting. Laboratory injection tests such as infiltration and injection in case of seepage for the stream bed soil at ${\bigcirc}{\bigcirc}$ Great Bridge in Seoul were carried out. Field injection tests to reinforce open caisson foundation at ${\bigcirc}{\bigcirc}$ Great Bridge were performed and the ability of application by microcement grouting was evaluated. From the test results, physical and engineering properties of microcement are better than those of ordinary portland cement. Also, the ability of infiltration and solidity in case of seepage is better than that of ordinary portland cement. Therefore, it is concluded that microcement is an excellent material to reinforce open caisson foundation of the existing bridge structure under the water and can be used as underpinning material of general foundations.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.