DOI QR코드

DOI QR Code

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance

그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가

  • Jin, Hyunwoo (Department of Geospace Engineering, University of Science & Technology) ;
  • Ryu, Byunghyun (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jangguen (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, Department of Geospace Engineering, University of Science & Technology)
  • Received : 2016.07.20
  • Accepted : 2016.08.24
  • Published : 2016.10.01

Abstract

Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.

국내 그라우팅은 주로 물과 유사한 점도를 가진 재료를 이용하여 시공되고 있다. 하지만 최근에는 지하공간 및 해저공간 개발이 활발해짐에 따라 미세균열 보강을 위한 고점도의 그라우팅 재료와 고압의 주입압력을 사용하는 그라우팅 시공이 증가하는 추세이다. 따라서 균열 폭, 그라우팅 재료의 점도, 주입압력을 고려하여 그라우팅 재료의 주입성능을 평가할 수 있는 실내실험 기준이 마련되어야 한다. 본 논문에서는 그라우팅 재료가 주입되는 방식인 방사형 흐름과 선형 흐름에 관한 메커니즘을 이론적으로 정리하고, 각각의 흐름을 모사할 수 있는 실내실험 장비를 소개하고 있다. 방사형 흐름은 원형의 아크릴판으로 제작하여 그라우팅 재료가 중심에서 방사형으로 퍼져나가도록 모사하였고, 선형 흐름은 평행한 스테인리스 철판으로 제작하여 그라우팅 재료가 한쪽 방향으로 주입되도록 그라우팅 재료의 주입 메커니즘을 모사하였다. 실내실험 장비는 상판과 하판으로 구성되어 있으며, 이 사이에 다양한 두께의 공업용 필름을 설치하여 현장에서 발생하는 다양한 균열 폭을 모사하였다. 본 연구에서 사용된 주입재료는 재료적 특성인 점도를 고정하기 위해 상온($20^{\circ}C$)에서 1cP로 알려진 물을 사용하여 실내실험 장비의 성능테스트를 수행하였으며, 이 결과를 바탕으로 최적의 그라우팅 재료 주입성능 평가 기법을 소개하고자 한다.

Keywords

References

  1. 최춘식 (2002), 지하구조물의 누수현황에 따른 시멘트 그라우팅 지수기법에 관한 연구, 지반환경, 제3권 제2호, pp. 20-31.
  2. Barton, N. (2004), The theory behind high pressure grouting -parts 1 and 2, Tunnels and Tunneling International, Volume 36, No. 9-10, pp. 28-30, 33-35.
  3. Bear, J. (1972), Dynamics of fluids in porous media, Dover Publication Inc., New york, pp. 65-113.
  4. Bernander, S. (2004), Grouting in sedimentary and igneous rock with special reference to pressure induced deformations, Technical Report, Lulea University of Technology, pp. 5-18.
  5. Borgesson, L., Pusch, R., Fredriksson, A., Hokmark, H., Karnland, O. and Sanden, T. (1992), Final report of the rock sealing project-sealing of zones disturbed by blasting and stress release, Technical Report, Swedish Nuclear Fuel and Waste Management Co., pp. 29-41.
  6. Do, J. M. (2012), A study on the field application of automatic grouting system, Korea Geo-Environmental Society, Vol. 13, Issue. 1, pp. 63-74 (in Korean).
  7. Gale, J. E. (1977), A numerical field and laboratory study of flow in rocks with deformable fractures, Ph.D. Thesis, University of California, pp. 255.
  8. Garshol, K. F. (2007), Pre-excavation grouting in tunneling, UGC International, BASF Construction Chemicals Europe LTD, pp. 11-23.
  9. Garshol, K. F., Tam, J. K. W., Chau, H. K. M. and Lau, K. C. K. (2012), High pressure grouting for groundwater ingress control in rock tunnels and caverns, Geotechnical Aspects of Tunnelling for Infrastructure Development, pp. 105-110.
  10. Kong, S. K. (2005), Properties of cement based permeation grout used in ground engineering, Master Thesis, National University of Singapore, pp. 1-7.
  11. Korea Institute of Civil Engineering and Building Technology (KICT) (2013), Development of key excavation solutions for expandable urban underground space, Research Report, pp. 45-51 (in Korean).
  12. Korea Institute of Civil Engineering and Building Technology (KICT) (2014), Improving efficiency of underground excavation using new construction materials, Research Report, pp. 12-18 (in Korean).
  13. Louis, C. (1969), A study of groundwater flow in jointed rock and its influence on the stability of rock masses, Rock Mechanics Research Report, Imperial College of Science and Technology, pp. 90.
  14. Mohammed, H. M., Pusch, R. and Knutsson, S. (2014), Study of cement-grout penetration into fractures under static and oscillatory conditions, Tunnelling and Underground Space Technology. Vol. 45, pp. 10-19.
  15. Noorishad, J., Ayatollahi, M. S. and Witherspoon, P. A. (1982), A finite-element method for coupled stress and fluid flow analysis of fractured rock masses, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 19, pp. 185-193. https://doi.org/10.1016/0148-9062(82)90888-9
  16. Polubarinova-Kochina, P. (1962), Theory of groundwater movement, Princeton University Press, New Jersey, pp. 613.
  17. Sichart, W. and Kyrieleis, W. (1930), Grundwasser absekungen bei fundierungsarbeiten.
  18. Sievanen, U. (2003), Preliminary estimations of water inflow and grouting conditions at Olkiluoto site, Working Report, Saanio & Riekkola Oy, pp. 5-6.
  19. Snow, D. (1965), A parallel plate model of fractured permeable media, Doctor Thesis, University of California, pp. 89-128.
  20. Witherspoon, P. A., Amick, C. H., Gale, J. E. and Iwai, K. (1979), Observations of a potential size-effect in experimental determination of the hydraulic properties of fractures, Water Resources Research, Vol. 15, pp. 1142-1146. https://doi.org/10.1029/WR015i005p01142

Cited by

  1. Evaluation of Injection capabilities of a biopolymer-based grout material vol.25, pp.1, 2016, https://doi.org/10.12989/gae.2021.25.1.031