• Title/Summary/Keyword: Group of permutations

Search Result 10, Processing Time 0.029 seconds

GALOIS GROUPS FOR PERMUTATIONS ON SETS

  • PARK HONG GOO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.657-663
    • /
    • 2005
  • In this paper, we consider groups of permutations S on a set A acting on subsets X of A. In particular, we show that if $X_2{\subseteq}X_1{\subseteq}A$ and Y is an S-normal extension of $X_2 in X_1$, then the Galois group $G_{S}(X_1/Y){\;}of{\;}X_1{\;}over{\;}X_2$ relative to S is an S-closed subgroup of $G_{S}(X_1/X_2)$ in the setting of a Galois theory (correspondence) for this situation.

Classification of Exponent Permutations over finite fields GF($2^n$) and its applications (유한체 상의 지수 함수의 분류와 암호학에의 응용)

  • Park, Sang-Woo;Kim, Kwang-Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.97-106
    • /
    • 1996
  • In this paper, we define an equivalence relation on the group of all permutations over the finite field GF($2^n$) and show each equivalence class has common cryptographic properties. And, we classify all exponent permutations over GF($2^7$) and GF($2^8$). Then, three applications of our results are described. We suggest a method for designing $n\;{\times}\;2n$ S(ubstitution)-boxes by the concatenation of two exponent permutations over GF($2^n$) and study the differential and linear resistance of them. And we can easily indicate that the conjecture of Beth in Eurocrypt '93 is wrong, and discuss the security of S-box in LOKI encryption algorithm.

A NOTE ON BILATERAL SEMIDIRECT PRODUCT DECOMPOSITIONS OF SOME MONOIDS OF ORDER-PRESERVING PARTIAL PERMUTATIONS

  • Fernandes, Vitor H.;Quinteiro, Teresa M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.495-506
    • /
    • 2016
  • In this note we consider the monoid $\mathcal{PODI}_n$ of all monotone partial permutations on $\{1,{\ldots},n\}$ and its submonoids $\mathcal{DP}_n$, $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $\mathcal{PODI}_n$ is a quotient of a semidirect product of $\mathcal{POI}_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $\mathcal{DP}_n$ is a quotient of a semidirect product of $\mathcal{ODP}_n$ and $\mathcal{C}_2$.

A Multilevel Key Distribution using Pseudo - random Permutations (의사 랜덤치환을 이용한 다중레벨 키분배)

  • Kim, Ju-Seog;Shin, Weon;Lee, Kyung-Hyune
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2493-2500
    • /
    • 1997
  • We propose a new key management scheme for multiuser group which is classified as hierarchical structure (sometimes it is called a multilevel security hierarchy) in the symmetric key cryptosystem. The proposed scheme is based on the trapdoor one-way permutations which are generated by the pseudo-random permutation algorithm, and it is avaliable for multilevel hierarchical structure composed of a totally ordered set and a partially ordered set, since it has advantage for time and storage from an implemental point of view. Moreover, we obtain a performance analysis by comparing with the other scheme, and show that the proposed scheme is very efficient for computing time of key generation and memory size of key storage.

  • PDF

WHEN ALL PERMUTATIONS ARE COMBINATORIAL SIMILARITIES

  • Viktoriia Bilet;Oleksiy Dovgoshey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.733-746
    • /
    • 2023
  • Let (X, d) be a semimetric space. A permutation Φ of the set X is a combinatorial self similarity of (X, d) if there is a bijective function f : d(X × X) → d(X × X) such that d(x, y) = f(d(Φ(x), Φ(y))) for all x, y ∈ X. We describe the set of all semimetrics ρ on an arbitrary nonempty set Y for which every permutation of Y is a combinatorial self similarity of (Y, ρ).

GENUS DISTRIBUTIONS FOR BOUQUETS OF DIPOLES

  • Jin Hwan Kim;Jaeun Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.225-234
    • /
    • 1998
  • We compute genus distributions for bouquets of dipoles by using the method concerning the cycle structure of permutations in the symmetric group. From this, we can deduce that every bouquet of dipoles is upper embeddable. We find a foumula for computing the embedding polynomials for bouquets of dipoles.

  • PDF

ISOMORPHISM CLASSES OF CAYLEY PERMUTATION GRAPHS

  • Nam, Yun-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.337-344
    • /
    • 1997
  • In this paper, we study the isomorphism problem of Cayley permutation graphs. We obtain a necessary and sufficient condition that two Cayley permutation graphs are isomrphic by a direction-preserving and color-preserving (positive/negative) natural isomorphism. The result says that if a graph G is the Cayley graph for a group $\Gamma$ then the number of direction-preserving and color-preserving positive natural isomorphism classes of Cayley permutation graphs of G is the number of double cosets of $\Gamma^\ell$ in $S_\Gamma$, where $S_\Gamma$ is the group of permutations on the elements of $\Gamma and \Gamma^\ell$ is the group of left translations by the elements of $\Gamma$. We obtain the number of the isomorphism classes by counting the double cosets.

  • PDF

BOUNDED MOVEMENT OF GROUP ACTIONS

  • Kim, Pan-Soo
    • Communications of Mathematical Education
    • /
    • v.5
    • /
    • pp.523-523
    • /
    • 1997
  • Suppose that G is a group of permutations of a set ${\Omega}$. For a finite subset ${\gamma}$of${\Omega}$, the movement of ${\gamma}$ under the action of G is defined as move(${\gamma}$):=$max\limits_{g{\epsilon}G}|{\Gamma}^{g}{\backslash}{\Gamma}|$, and ${\gamma}$ will be said to have restricted movement if move(${\gamma}$)<|${\gamma}$|. Moreover if, for an infinite subset ${\gamma}$of${\Omega}$, the sets|{\Gamma}^{g}{\backslash}{\Gamma}| are finite and bounded as g runs over all elements of G, then we may define move(${\gamma}$)in the same way as for finite subsets. If move(${\gamma}$)${\leq}$m for all ${\gamma}$${\subseteq}$${\Omega}$, then G is said to have bounded movement and the movement of G move(G) is defined as the maximum of move(${\gamma}$) over all subsets ${\gamma}$ of ${\Omega}$. Having bounded movement is a very strong restriction on a group, but it is natural to ask just which permutation groups have bounded movement m. If move(G)=m then clearly we may assume that G has no fixed points is${\Omega}$, and with this assumption it was shown in [4, Theorem 1]that the number t of G=orbits is at most 2m-1, each G-orbit has length at most 3m, and moreover|${\Omega}$|${\leq}$3m+t-1${\leq}$5m-2. Moreover it has recently been shown by P. S. Kim, J. R. Cho and C. E. Praeger in [1] that essentially the only examples with as many as 2m-1 orbits are elementary abelian 2-groups, and by A. Gardiner, A. Mann and C. E. Praeger in [2,3]that essentially the only transitive examples in a set of maximal size, namely 3m, are groups of exponent 3. (The only exceptions to these general statements occur for small values of m and are known explicitly.) Motivated by these results, we would decide what role if any is played by primes other that 2 and 3 for describing the structure of groups of bounded movement.

  • PDF

Distributional Pattern of Tree Species in Response to Soil Variables in a Semi Natural Tropical Forest of Bangladesh

  • Ara, Saida Hossain;Limon, Mahedi Hasan;Kibria, Mohammad Golam
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.14-24
    • /
    • 2021
  • A plant community is a group of populations that coexist in space and interact directly or indirectly with the environment. In this paper, we determined the pattern of tree species composition in response to soil variables in Khadimnagar National Park (KNP), which is one of the least studied tropical forests in Bangladesh. Soil and vegetation data were collected from 71 sample plots. Canonical Correspondence Analysis (CCA) with associated Monte Carlo permutation tests (499 permutations) was carried out to determine the most significant soil variable and to explore the relationship between tree species distribution and soil variables. Soil pH and clay content (pH with p<0.01 and Clay content with p<0.05) were the most significant variables that influence the overall tree species distribution in KNP. Soil pH is related to the distribution and abundance of Syzygium grande and Magnolia champaca, which were mostly found and dominant species in KNP. Some species were correlated with clay content such as Artocarpus chaplasha and Cassia siamea. These observations suggest that both the physico-chemical properties of soil play a major role in shaping the tree distribution in KNP. Hence, these soil properties should take into account for any tree conservation strategy in this forest.