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ISOMORPHISM CLASSES OF
CAYLEY PERMUTATION GRAPHS

YUNSUN NaM

ABSTRACT. In this paper, we study the isomorphism problem of
Cayley permutation graphs. We obtain a necessary and sufficient
condition that two Cayley permutation graphs are isomorphic by a
direction-preserving and color-preserving (positive/negative) natu-
ral isomorphism. The result says that if a graph G is the Cayley
graph for a group I’ then the number of direction-preserving and
color-preserving positive natural isomorphism classes of Cayley per-
mutation graphs of G is the number of double cosets of I'Y in S,
where St is the group of permutations on the elements of I and I'?
is the group of left translations by the elements of I". We obtain the
number of the isomorphism classes by counting the double cosets.

1. Introduction

The permutation graphs were introduced as a generalization of the
Petersen graph by Chartrand and Harary in [1]. For a labeled graph
G with vertex set V(G) = {1,2,3,--- ,n} and a permutation a in S,,
the a-permutation graph of G, P,(G), consists of two disjoint copies of
G, Gy and G, with vertex sets V(G,) = {v1,v2,- - ,v,} and V(G,) =
{w1,ws, - - ,wy}, along with the edges (v;, wa()) for 1 <i < n.

The isomorphism problem of permutation graphs has been studied by
many people. Holton and Stacey studied on path permutation graphs in
(4] and many people studied on cycle permutation graphs in [5, 6, 8]. In
this paper, we study the isomorphism problem of Cayley permutation
graphs.

Let I' be a finite group and X be a generating set for I'. The Cayley
graph G for I' and X is the graph whose vertex set and edge set are
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defined as follows:
V(G)=T; E(G)={(g,97)|gel, x € X}

Let St denote the group of permutations on the elements of I'. Let a be a
permutation in Sr. Then the permutation graph P,(G) has as its vertex
set {vg, wy | g € T'}, and as its edge set {(vg, Vgz), (Wq, Wyz), (Vg, Wa(g)) | g
€T, x € X}. Specially we call the permutation graph P,(G) the Cayley
a-permutation graph of G when G is a Cayley graph.

Throughout this paper, a graph G is the Cayley graph for a group I'
and a generating set X unless any remark is given.

Given a graph G and two permutations a and 7 in Sr. The graph
P.(G) is isomorphic to Pg(G) by a positive natural isomorphism ¢ if ¢
restricted to (7, is G, and thus ¢ restricted to G, is G,. The graph
P,(G) is isomorphic to P3(G) by a negative natural isomorphism ¢ if ¢
restricted to G, is G, and thus ¢ restricted to G, is G,. The graph
P,(G) is isomorphic to Pg(G) by a natural isomorphism ¢ if ¢ is either
a positive natural isomorphism or a negative natural isomorphism.

A Cayley graph is called a Cayley color graph if a direction and a
color are designated for each edge as follows: an edge (g, gx) has the
direction from g to gr and the color . An automorphism ¢ of a Cayley
color graph T’ is said to be direction-preserving and rcolor-preserving if an
edge is mapped to an edge with the same color and the tail of an edge is
mapped to the tail of the image edge, that is, ¢(gz) = hxz when ¢(g) = h.
We extend the definition of direction-preserving and color-preserving
to natural isomorphisms of Cayley permutation graphs. We say that
a natural isomorphism ¢ from P,(G) to Pg(G) is direction-preserving
and color-preserving (DPCP) if ¢(vgy) = vhy and ¢(wjz) = wi, when
@(vg) = vy and @(w;) = wi (respectively, ¢(vyy) = wh, and P(wj;) = vy
when ¢(vy) = wy, and ¢(w;) = ).

From the definition, we can easily tell that a DPCP positive natural
isomorphic or a DPCP natural isomorphic relation is an equivalence
relation on the set of all Cayley permutation graphs of G but a DPCP
negative natural isomorphic relation is not.

In this paper, we obtain a necessary and sufficient condition that
P,(G) and P3(G) are isomorphic by a DPCP (pos:tive/negative) natu-
ral isomorphism (Theorem 4). Using this condition, we show that the
number of DPCP positive natural isomorphism classes of Cayley permu-
tation graphs of G is equal to the number of double cosets of I'Y in Sr,
where I' is the group of left translations by the elements of I'. Using



Isomorphism classes of Cavley permutaticn graphs 339

group action we compute the number of double cosets of I'Y in Sr, and
consequently obtain the number of DPCP positive natural isomorphism
classes of Cayley permutation graphs of G (Theorem 7).

The group I' can be identified with the subgroup I'? of S by the
natural monomorphism g + £, where £, is the left translation by ¢. In
this sense, the number of double cosets of T in St is equal to the number
of DPCP positive natural isomorphism classes of Cayley permutation
graphs of G.

2. Necessary and sufficient condition

In this section, we obtain a necessary and sufficient condition that two
Cayley permutation graphs are isomorphic by a DPCP (positive/ negative)
natural isomorphism.

The following three lemmas will be used to prove Theorem 4, which
gives a necessary and sufficient condition for two permutation graphs
Fo(G) and P3(G) to be isomorphic by a DPCP (positive/negative) nat-
ural isomorphism. The first lemma is a partial result of Frucht’s theorem
and we state it here without proof (see [2, p. 70])

LEMMA 1. [2] Let G be the Cayley graph for a groupT" and a generat-
ing set X. Then the set of automorphisms that are direction-preserving
and color-preserving forms a group with function composition, which is
the group T* = {¢,|g € T'}.

We have used £, to denote the left translation »y an element ¢ in T
We will let r, denote the right translation by g. If an edge e is in G,
then the ends of e are v, and vy, for some g € I' and = € X. Since gr is
7(g), the ends of e are vy and v,_,,. It is similar for an edge in G,

LEMMA 2. Let G be the Cayley graph for a group I' and a generating
set X, and let o and 3 be two permutations in Sr. Then
(i) the graph P,(G) is isomorphic to Ps(G) by a DPCP positive natu-
ral isomorphism if and only if there exists a € I such that a ™ 'r,a =
0137 r 8¢, for allx € X;
(ii) the graph P,(G) is isomorphic to Py(G) by a DPCP negative
natural isomorphism if and only if there exists a € ' such that
alrpa =0;18r. 37, for all x € X; and
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(iii) the graph P.(G) is isomorphic to P3(G) by a DPCP natural iso-
morphism if and only if there exists a € T' such that o™ 'rya =
018738, for allz € X or o Yrpa = €13r, 87, for allz € X.

Proof. (i) Suppose that P,(G) and P3(G) are isomorphic by a DPCP
positive natural isomorphism ¢. Then the restriction of ¢ to the G, of
P,(G) is a DPCP isomorphism to the G, of P3(G), which induces a left
translation ¢, in T (by Lemma 1). The path VgWa(g)Wrya(g)Va~rsa(g) 11
P,(G) is mapped to the path v, gy wgr, (g)Wr, 8. ()0 311, pta(e) 1N Pa(G).
Thus a™lrya = 071371 r, 30,

Now prove the other direction. Suppose that o™ 'r,a = €187 r 3¢,
for some a € T'. Define the map ¢ : P,(G) — P3(G) by é(vg) = vs,(g)
and @(wy) = Wgra-1(g)- Then the map ¢ is a DPCP positive natural
isomorphism.

We prove only (i) here, because the proof of (ii) is similar to that of
(1) and (iii) follows from (i) and (ii). ]

LEMMA 3. Let I' be a group and X be a generating set for I'. Let
X" = {r. |z € X}. Then the center of X" in Sr, Ci X7), is the set I'.

Proof. Clearly, a left translation ¢, is in C(X7). If ¢ is in C'(X7), then
o(gr) =oc(g)rforallx € X and all g€ . If g =z ,29--- x4, then

o(g) =o(ryry- - a) = o(Ty09 - Ty g = -+ -
=o(x1)ry -1, = o(e)r1x9 -1, = o(e)g,

where e is the identity of the group I'' Thus the permutation o is the
left translation by o(e). ]

Now, we give one of our main theorems.

THEOREM 4. Let G be the Cayley graph for a group I' and a gener-
ating set X, and let o and (3 be two permutations in Sp. Then
(i) the graph P,(G) Is isomorphic to Pg(G) by a DPCP positive nat-
ural isomorphism if and only if 3 € Ttal¥;
(ii) the graph P,(G) is isomorphic to P3(G) by a DPCP negative nat-
ural isomorphism if and only if 3 € T*a™T¥; and
(iii) the graph P.(G) is isomorphic: to P3(G) by a DPCP natural iso-
morphism if and only if 3 € T'al’ U T a™ T,

Proof. (i) Suppose that the graph P,(G) and P;(G) are isomorphic
by a DPCP positive natural isomorphism. By Lemma 2, there exists
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a € T such that a™'r,a = £;1871r, 8¢, for all z € X. Thus #¢,a"' is in
the center C(X7) (= I'¥) and so /# belongs to I'al*.

Now suppose that 3 is in [*al'Y. Then § = ¢,0¢, for some a and b in
T. Since 4, is in the center C(X7}, 87,8 = £; o~ r,aly for all z € X
By Lemma 2, the graph P,(G) and P3(G) are isomorphic by a DPCP
positive natural isomorphism.

We prove only (i) here, because the proof of (ii) is similar to that of
(i) and (iii) follows from (i) and (ii). O

3. Counting

We have already noted in Section 1 that a DPCP positive natural
isomorphic or a DPCP natural isomorphic relation is an equivalence re-
lation on the set of all Cayley permutation graphs of G, but a DPCP
negative isomorphic relation is not. In this section, we compute the
numbers of the equivalence classes, i.e., the DPCP positive natural iso-
morphism classes and the DPCP natural isomorphism classes. Theorem
4 says that the number of DPCP positive natural ssomorphism classes of
Cayley permutation graphs of G is equal to the number of double cosets
of I in Sp. Using group action we compute the number of the dou-
ble cosets, and consequently obtain the number of the DPCP positive
natural isomorphism classes.

In Section 1, we already noted that the group I' can be identified with
the subgroup I'¥ of S and in this sense the number of double cosets of
I' in St is equal to the number of DPCP positive natural isomorphism
classes of Cayley permutation graphs of G.

Now we consider the following group action tc¢ compute the number
of double cosets of I in Sp. Define an action [ x T, Sr] — Sr by
(a,b)a — £,af,. Let Fix(qp) denote the set of fixed points of (a,b), i.e.,

Fix(op = {a ¢ Sr|(a,b)a = ¢}.
We let o(g) denote the order of g in T

LEMMA 5. Let a and b be any elements in a group I'.

(i) If o(a) and o(b) are different, then Fix(,p) = 0.
(it) If o(a) and o(b) are the same, then

|FiX(a b)l =-d

r
where d = o(a) = o(b) and 1 = l—(;—’
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Proof. (i) Assume that there exists a permutation « in Fix(q). Then
a(g) = loaby(g) for all g € T, ie., a(bg) = a~'a(g) for all ¢ € T.
Since a(b°@) = a=*@a(e) = a(e) and « is one-tc-one, 9 = e. So
o(b) divides o(a). Similarly, we conclude that o(a) divides o(b). This
contradicts that o(a) and o(b) are different.

(ii) Let a be any element in Fixgg. Let {<a>aj,<7a>ay, - ,<a>
a.} and {< b > b, <b>by,---,<b>b} be the sets of all right cosets
of < a > and of < b >, respectively. (Here, < a > denotes the cyclic
subgroup of I' generated by a.) If a(b;) = a,laj, then a(b™by) = a’_""aj
for all m. Since all the elements in the same right coset of < b > are
mapped by o to elements in the same right coset of << @ > and the order
of a coset of < a > is the same as that of < b >, there is one-to-one
correspondence between the sets of right cosets of < a > and of < b >,
And the images of all the elements in < b > b, are uniquely determined
by the image a(bx). Thus |Fix(,y] is o - d". J

LEMMA 6. Let I' be a group. Then the number of double cosets of
I'* in St is
1 «— 5
___ 2o
2 Z ’,f{i 7,. ( 3
Tl d|{T|

where ng, is the number of the elements of order d in T and 1 = '%I

Proof. The orbit of « is the double coset [*al. Thus it follows from

Burnside’s lemma [7, p. 163] and Lemma 5. O

Now we are ready to compute the number of DPCP (positive) iso-
morphism classes of Cayley permutation graphs of (.

THEOREM 7. Let G be the Cayley graph for a group I" and a gener-
ating set X. Then

ley permutation graphs of G is

1 2 d
——3271d~7!-d,
I

. . T
where ng Is the number of the clements of order d in I’ and 1 = |-l;

o
and
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(ii) the number of DPCP natural isomorphism classes of Cayley per-
mutation graphs of G is

1 .
%{ ﬂiZné-z!-d’+|{a"|cyl‘zaﬂfp#w,aESF}I }
d|IT|

where ng and 1 are the same as in (i) and @ is the orbit of o under
the group action defined at the beginning of this section.

Proof. (i) It follows from Theorem 4 (i) and Lemma 6.

(ii) By Theorem 4 (iii), the DPCP natural isomorphism class of P (G) is
a@Ua-1. The orbits @ and a~1 are the same if and only if o' € Ial™.
And o~ ! € TYal” if and only if al¥a N T # 0. O

Example:

1. Let G be the Cayley graph for the cyclic group Z, (p is a prime)
and the generating set {1}. Then G is the cycle C, of length p.
Since every element except the identity has order p, the number of
DPCP positive natural isomorphism classes of Cayley permutation
graphs of C} is:

%[(p— I+ (p— 1))

2. Let G be the Cayley graph for the group Z, x Z; (p and g are
distinct primes) and the generating set {(i,0),(0,1)}. Then G
is the discrete torus C, x (’;. Since the group has one element
of order one, p — 1 elements of order p, ¢ - 1 elements of order
q and (p — 1)(¢ — 1) elements of order pg, the number of DPCP
positive natural isomorphisn classes of Cayley permutation graphs
of O, x Cy is:

piq[(pq—l)w(;n—l)?(q— DI D4 (g—1)4p—1)lg® V+(p—1)*(¢—1)*].
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