DOI QR코드

DOI QR Code

WHEN ALL PERMUTATIONS ARE COMBINATORIAL SIMILARITIES

  • Viktoriia Bilet (Department of Theory of Functions Institute of Applied Mathematics and Mechanics of NASU) ;
  • Oleksiy Dovgoshey (Department of Theory of Functions Institute of Applied Mathematics and Mechanics of NASU, Institut fuer Mathematik Universitaet zu Luebeck)
  • Received : 2022.05.25
  • Accepted : 2022.10.11
  • Published : 2023.05.31

Abstract

Let (X, d) be a semimetric space. A permutation Φ of the set X is a combinatorial self similarity of (X, d) if there is a bijective function f : d(X × X) → d(X × X) such that d(x, y) = f(d(Φ(x), Φ(y))) for all x, y ∈ X. We describe the set of all semimetrics ρ on an arbitrary nonempty set Y for which every permutation of Y is a combinatorial self similarity of (Y, ρ).

Keywords

Acknowledgement

The authors are grateful to the anonymous referee for useful comments and questions.

References

  1. M. Bessenyei and Z. P'ales, A contraction principle in semimetric spaces, J. Nonlinear Convex Anal. 18 (2017), no. 3, 515-524.
  2. V. Bilet, O. Dovgoshey, M. Kucukaslan, and E. Petrov, Minimal universal metric spaces, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 1019-1064. https://doi.org/10.5186/aasfm.2017.4261
  3. V. Bilet, O. Dovgoshey, and R. Shanin, Ultrametric preserving functions and weak similarities of ultrametric spaces, p-Adic Numbers Ultrametric Anal. Appl. 13 (2021), no. 3, 186-203. https://doi.org/10.1134/S207004662103002X
  4. L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1953.
  5. J. Diatta and B. Fichet, Quasi-ultrametrics and their 2-ball hypergraphs, Discrete Math. 192 (1998), no. 1-3, 87-102. https://doi.org/10.1016/S0012-365X(98)00067-3
  6. A. A. Dovgoshei and D. V. Dordovskii, Betweenness relation and isometric imbeddings of metric spaces, Ukrainian Math. J. 61 (2009), no. 10, 1556-1567; translated from Ukrain. Mat. Zh. 61 (2009), no. 10, 1319-1328. https://doi.org/10.1007/s11253-010-0297-7
  7. O. Dovgoshey, Semigroups generated by partitions, Int. Electron. J. Algebra 26 (2019), 145-190. https://doi.org/10.24330/ieja.587041
  8. O. Dovgoshey, Combinatorial properties of ultrametrics and generalized ultrametrics, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), no. 3, 379-417. https://doi.org/10.36045/bbms/1599616821
  9. O. Dovgoshey and J. Luukkainen, Combinatorial characterization of pseudometrics, Acta Math. Hungar. 161 (2020), no. 1, 257-291. https://doi.org/10.1007/s10474-020-01020-x
  10. O. Dovgoshey and E. Petrov, Weak similarities of metric and semimetric spaces, Acta Math. Hungar. 141 (2013), no. 4, 301-319. https://doi.org/10.1007/s10474-013-0358-0
  11. O. Dovgoshey and R. Shanin, Uniqueness of best proximity pairs and rigidity of semimetric spaces, J. Fixed Point Theory Appl. 25 (2023), 34 https://doi.org/10.1007/s11784-022-01042-8
  12. N. V. Dung and V. T. L. Hang, On regular semimetric spaces having strong triangle functions, J. Fixed Point Theory Appl. 19 (2017), no. 3, 2069-2079. https://doi.org/10.1007/s11784-016-0395-8
  13. M. Frechet, Sur quelques points de calcul fonctionnel, Rend. del Circ. Mat. di Palermo 22 (1906), 1-74. https://doi.org/10.1007/BF03018603
  14. D. J. Greenhoe, Properties of distance spaces with power triangle inequalities, Carpathian Math. Publ. 8 (2016), no. 1, 51-82. https://doi.org/10.15330/cmp.8.1.51-82
  15. J. Jachymski and F. Turobos, On functions preserving regular semimetrics and quasi-metrics satisfying the relaxed polygonal inequality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, Paper No. 159, 11 pp. https://doi.org/10.1007/s13398-020-00891-7
  16. L. Janos, A metric characterization of zero-dimensional spaces, Proc. Amer. Math. Soc. 31 (1972), 268-270. https://doi.org/10.2307/2038557
  17. W. A. Kirk and N. Shahzad, Fixed points and Cauchy sequences in semimetric spaces, J. Fixed Point Theory Appl. 17 (2015), no. 3, 541-555. https://doi.org/10.1007/s11784-015-0233-4
  18. K. Kunen and J. E. Vaughan, Handbook of Set-Theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984.
  19. H. W. Martin, Strongly rigid metrics and zero dimensionality, Proc. Amer. Math. Soc. 67 (1977), no. 1, 157-161. https://doi.org/10.2307/2041261
  20. K. Menger, Untersuchungen uber allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75-163. https://doi.org/10.1007/BF01448840
  21. E. Petrov, Weak similarities of finite ultrametric and semimetric spaces, p-Adic Numbers Ultrametric Anal. Appl. 10 (2018), no. 2, 108-117. https://doi.org/10.1134/S2070046618020048
  22. E. Petrov and R. Salimov, On quasisymmetric mappings in semimetric spaces, Ann. Fenn. Math. 47 (2022), no. 2, 723-745. https://doi.org/10.54330/afm.116845
  23. M. O. Searcoid, Metric Spaces, Springer-Verlag, London, 2007.
  24. W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), no. 2, 361-373. https://doi.org/10.2307/2370790