• Title/Summary/Keyword: Ground Reinforcement

Search Result 614, Processing Time 0.022 seconds

A Study on the Type of Pavement Base and Drainage in Mountain Road for the Prevention of the Pavement Damage by Uplift Water Pressure (수치해석을 활용한 산지도로의 상향침투수압으로 인한 포장파손방지를 위한 포장기층종류 및 배수형태의 고찰)

  • Lim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Construction of road closed to mountains is inevitable in Korea because the mountainous region in Korea is more than 70% in area. Recently, due to global warming, typhoons or heavy rainfalls frequently occur, and accordingly, mountain roads are seriously damaged by landslides, debris flows, and uplift pressure below pavement. in this study, damage on pavement by uplift pressure was investigated. Various influencing factors such as slope angle, reinforcement of slope surface, thickness of soil cover underlain by rock, and types of drainage system were considered to evaluate uplift pressure acting on the bottom of pavement. Raising of water table up to the surface of slope may depend on the duration and intensity of rainfall. It shows that the installation of subdrain can reduce the uplift water pressure. Therefore, It is concluded that the use of subdrain system is effective to decrease uplift pressure and cement treated base is more endurable than typical crushed-stone base.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

A study on the improvement of antenna switching module structure of ground based ES equipment (지상용 ES장비의 안테나전환기 구조 개선에 관한 연구)

  • Kim, Seung-Woo;Lee, Kang-Ho;Chin, Hui-cheol;Choi, Jae-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.151-159
    • /
    • 2017
  • The aspect of modern warfare is gradually changing to a network of warfare, and its central information electronic warfare is evolving every day. Recently, domestic equipment of electronic warfare, which have succeeded in domestic localization, are strongly influenced by the nature of the environment. Therefore, the structural reliability of the antenna switching module that connects the mast and antenna of the ES equipment is the most important. This study proposed a structure that has an improved structure of antenna switching module by currently analyzing the structure of the antenna switching module and the environmental influence. By modifying the structure of the antenna switching module welding method and part of the reinforcement block, the structure was improved and the validity of the improved antenna switching module was simulated using a load test. The simulation showed that the safety factors of antenna switching module welding point and reinforced block part was enhanced 5.3 and 1.5 times compared to the existing values. These values were verified by load (181kg) test results, which was each 3.7Mpa and 64.4Mpa. The load test results were similar to the simulation results and load supporting capacity of the proposed antenna switching module was enhanced.

Evaluation of Loss of Prestress Force of Tensile Anchor by Long Term Measurement (장기계측을 통한 인장형 앵커의 인장력 손실 평가)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.15-22
    • /
    • 2015
  • In this study, to evaluate the long-term behavior characteristics and the loss of prestress force, the long-term measurement of the tensile anchors in the actual construction was performed and the results were analyzed comparing with the existing estimation. As the reinforcement member used for the purpose of slope stability or uplift-resisting of the permanent structure, etc, the permanent anchor should maintain the functions during the performance period of the structure differently from the temporary anchor. However, as the time passes by, since the relaxation and the creep of the anchor occur constantly, the management for the loss of tensile force is essential to perform the functions stably. So far, the loss of the tensile force has been estimated according to the reduction of the prestress using elasticity theory and using the relaxation value according to the type of tension member and the test using the long-term measurement is limited. Therefore, in this study, the site condition and the ground were investigated for the tensile anchor in the actual construction and the long-term measurement results more than 500 days was analyzed by installing the loadcell, inclinometer and the groundwater level gauge. In addition, the long-term behavior characteristics were evaluated by comparing the disposition of the measured earth retaining wall and the tension force loss of the anchor with the existing interpretation results. In the evaluation results, the most of the tension force loss occurs within 90 days and the loss was measured less than the estimated values.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

A Basic Study on Upward Soil Nailing Combined Horizontal Drainage (수평배수공을 겸한 상향식 쏘일네일링 공법의 기초연구)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Choi, Geunhyeok;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.151-158
    • /
    • 2009
  • In the early 1990s, soil nailing was first introduced as method of reinforcement for the slope stability and ground excavation, and as its application was increased the improved soil nailing was also developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, upward soil nailing combined with horizontal drainage system. This paper is to compare upward soil nailing combined with horizontal drainage system with downward direction of the soil nailing. In order to study the limit equilibrium slope stability analysis and comparison with factor of safage, excavation for the vertical displacement for comparison with continuous analysis. According to this study, safage factor is decreased considerably using limit equilibrium analysis and makes no odds for the horizontal displacement when soil nail was installed upward.

  • PDF

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

The Stability Assessment of ASSM Tunnels in Service (공용중인 ASSM 터널의 안정성 평가)

  • Kwon, Young Jeong;Park, Min Chul;Shin, Hyo Hee;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.150-159
    • /
    • 2011
  • The need of securing the stability and extending service lives by efficient maintenance of deteriorated tunnels for several decades has been increased. The stability and the usability of conventional tunnels can be decreased by change of physical properties of the surrounding ground, geometrical properties of the tunnel, an underground water level, environmental conditions, oxidation of lining and the breakdown of constituent materials. In respect of a long-term view, it is need to check all sorts of degradation, the degree of damage and durability to improve the serviceability and to come up with measures to maintain effectively. This paper is about study to analyze the stability of conventional tunnels(American Steel Support Method. ASSM). Three tunnels are chosen in those built in the 1930s and 1960s and the locations of tunnels are selected variously(ChungCheong, GyungBuk, GangWon, Jeolla, etc.) to secure reliability of this study. The state of repair and reinforcement of linings, cracks, and thickness and strength of lining of conventional tunnels in service are researched, compared and analyzed. The crack gauge, the GPR, the schmitt hammer was used for the crack investigation, cavitation, the strength respectively. By using these, the comparative analysis for conventional tunnels was conducted. As a result, there are more cracks in tunnels built in the 1930s than those of tunnels built in the 1960s, and lining strength of the 1930s is higher than those of the 1960s. The thickness of lining in tunnels built in the 1960s is higher than those in tunnels built in the 1930s. In proportion to thickness, cavitation occurred more frequently in tunnels built in the 1960s compared to those in tunnels built in the 1930s.