• Title/Summary/Keyword: Grid inverter

Search Result 714, Processing Time 0.026 seconds

Control Method for Reducing the THD of Grid Current of Three-Phase Grid-Connected Inverters Under Distorted Grid Voltages

  • Tran, Thanh-Vu;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.712-718
    • /
    • 2013
  • This paper proposes a control method for reducing the total harmonic distortion (THD) of the grid current of three-phase grid-connected inverter systems when the grid voltage is distorted. The THD of the grid current caused by grid voltage harmonics is derived by considering the phase delay and magnitude attenuation due to the hardware low-pass filter (LPF). The Cauchy-Schwarz inequality theory is used in order to search more easily for the minimum point of the THD. Both the gain and angle of the compensation voltage at the minimum point of the THD of the grid current are derived with the variation of cut-off frequencies of the hardware LPF. Simulation and experimental results show the validity of the proposed control methods.

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

A Study for Mutual Interference of LCL Filter Under Parallel Operation of Grid-Connected Inverters (계통연계형 인버터 병렬운전 시 LCL 필터 상호간섭 특성 연구)

  • Lee, Gang;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2021
  • This study analyzes the resonance characteristics caused by the mutual interference between LCL filters and the grid impedance under the parallel operation of the grid-connected inverter using the LCL filter. These characteristics are verified through simulation and experiment. Two inverters are used to connect to the grid in parallel, and the system parameters, including the LCL filter, are set to the same conditions. In the case of inverters running in parallel at the point of common coupling, the presence of grid impedance causes mutual interference between the LCL filters of each inverter, and the deviation of the filter resonance frequency is analyzed to understand the parallel inverter. The correlation between the number of devices and the size of grid impedance is simulated by PSIM and verified by MATLAB. By connecting the real-time digital simulator Typhoon HILS to the DSP 28377 control board, the mutual interference characteristics are tested under the condition of two inverters running in parallel. The experimental and analysis results are the same, indicating the validity of the analysis.

High-Frequency DC Link Inverter for Grid-Connected Photovoltaic System (고주파링크방식을 이용한 PV용 PCS의 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;Jung, Myoung-Woong;Choi, Jae-Ho;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1313-1315
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency inverter bridge, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter bridge, and an AD filter. The high frequency inverter bridge switching at 20kHz is used to generate bipolar PWM pulse, which is subsequently rectified by diode bridge rectifiers to result in a full-wave rectified sine wave. Finally, it is unfolded by a low frequency inverter bridge to result in a 60Hz sine wave power output. In this paper, the control algorithm for synchronous current feedback control method and a maximum power point tracking (MPPT) method using DSP are described. And, the simulation and experimental results are shown to verify the validity of the proposed system.

  • PDF

Grid-Connected Photovoltaic System Based on a Cascaded H-Bridge Inverter

  • Rezaei, Mohammad-Ali;Iman-Eini, Hossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.578-586
    • /
    • 2012
  • In this paper a single-phase Cascaded H-Bridge (CHB) inverter for photovoltaic (PV) applications is presented. Based on the presented mathematical analysis, a novel controller is introduced which adjusts the inverter power factor (PF) and manipulates the distribution of the reactive power between the cells to enhance the operating range of the CHB inverter. The adopted control strategy enables tracking of the maximum power point (MPP) of distinct PV strings and allows independent control of the dc-link voltages. The proposed controller also enables the inverter to operate under heavily unbalanced PV conditions. The performance of the CHB inverter and the proposed controllers are evaluated in the PSCAD/EMTDC environment. A seven-level CHB-based grid connected laboratory prototype is also utilized to verify the system performance.

Simulation and Analysis of Losses of Switching Device for Single Grid-connected Full Bridge Inverter (단상 계통 연계형 풀브릿지 인버터의 스위치 손실 모의 및 분석)

  • Son, Myeongsu;Lim, Hyun-Ji;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.294-297
    • /
    • 2018
  • This paper analyzes the losses of the switching device for a full bridge inverter connected to the grid. As the development of power conversion system, losses are dominant factors in judging the efficiency of a system. The losses of a switching device can be divided into switching loss and conduction loss, both of which can be estimated by analyzing periodic switching waveform. The switching loss is generated when the switch is turned on and off, while the conduction loss is generated when the switch is turned on. The estimated losses of the MOSFET switch are compared with the simulation results.

The study of renewable grid inverter for the distribution DC power line (DC 배전용 분산 신재생 연계형 전력변환기에 관한 연구)

  • Lee, Yul-Jae;Lee, Hwa-Chun;Han, Man-Seung;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.32-33
    • /
    • 2011
  • This paper is about to the efficiency improvement of inverter for renewable energy. It is proposed the structure enhanced quality by using individually DC/DC converter for MPPT and only one inverter for DC/AC and the grid control algorithm for current control mode to the converter and inverter. The grid control algorithm is possible to setting the current reference to the dependent function of DC distribution voltage.

  • PDF

Simulation study of a regenerative inverter for absorption of regenerative energy in a DC traction substation (도시철도직류변전소의 회생전력 흡수를 위한 회생인버터 시뮬레이션)

  • Bae C. H.;Han M. S.;Kim Y. G.;Kwon S. Y.;Park H. J.
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.705-711
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and recycles the surplus regenerative power by delivering it. to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

A Study on Tuning of Current Controller for Grid-connected Inverter Using Particle Swarm Optimization (PSO를 이용한 계통연계형 인버터 전류제어기의 자동조정에 관한 연구)

  • Ahn Jong-Bo;Kim Won-gon;Hwang Ki-Hyun;Park Jun-H
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.671-679
    • /
    • 2004
  • This paper presents the on-line current controller tuning method of grid-connected inverter using PSO(particle swarm optimization) technique for minimizing the harmonic current. Synchronous frame PI current regulator is commonly used in most distributed generation. However, due to the source voltage distortion, specially in weak AC power system, current may contain large harmonic components, which increase THD(total harmonic distortion) and deteriorates power quality. Therefore, some tuning method is necessary to improve response of current controller. This paper used the PSO technique to tune the current regulator and through simulation and experiments, usefulness of the tuning method has been verified. Especially in simulating the tuning process, ASM(average switching model) of inverter is used to shorten execution time.

A Study on Effects of Offset Error during Phase Angle Detection in Grid-tied Single-phase Inverters based on SRF-PLL (SRF-PLL을 이용한 계통연계형 단상 인버터의 전원 위상각 검출시 옵셋 오차 영향에 관한 연구)

  • Kwon, Young;Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • This paper proposes an ripple reduction algorithm and analyzes the effects of offset and scale errors generated by voltage sensor while measuring grid voltage in grid-tied single-phase inverters. Generally, the grid-connected inverter needs to detect the phase angle information by measuring grid voltage for synchronization, so that the single-phase inverter can be accurately driven based on estimated phase angle information. However, offset and scale errors are inevitably generated owing to the non-linear characteristics of voltage sensor and these errors affect that the phase angle includes 1st harmonic component under using SRF-PLL(Synchronous Reference Frame - Phase Locked Loop) system for detecting grid phase angle. Also, the performance of the overall system is degraded from the distorted phase angle including the specific harmonic component. As a result, in this paper, offset and scale error due to the voltage sensor in single-phase grid connected inverter under SRF-PLL is analyzed in detail and proportional resonant controller is used to reduce the ripples caused by the offset error. Especially, the integrator output of PI(Proportional Integral) controller in SRF-PLL is selected as an input signal of the proportional resonant controller. Simulation and experiment are performed to verify the effectiveness of the proposed algorithm.