• 제목/요약/키워드: Grid impedance

검색결과 133건 처리시간 0.035초

접지그리드의 접지임피던스의 주파수 의존성 (Frequency Dependence of Impedance of the Grounding Grid)

  • 이복희;이동문;엄주홍;김교운
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.22-28
    • /
    • 2003
  • 본 논문에서는 접지임피던스의 주파수 의존성에 대하여 기술하였다. 사용중인 접지시스템의 과도응답특성을 평가기법을 제안하기 위하여 가변주파수 인버터와 대역통과 필터를 사용하여 인가전류의 주파수를 가변시키면서 접지임피던스를 측정하였다. 20[Hz]∼2.1[kHz] 범위의 주파수에서 접지임피던스의 크기와 위상을 분석한 결과 접지임피던스는 인가전류의 주파수가 증가함에 따라 증가하는 경향을 나타내었다. 22.9[kV] 변전실 접지시스템에서 인가전류의 주파수가 2[kHz]일 때 측정한 접지임피던스는60[Hz]일 때 보다 거의 3배 정도 증가하였다. 접지시스템의 주파수 의존성은 접지도체의 인덕턴스에 의해 나타나는 리액턴스 성분에 기인하는 것으로 나타났다. 따라서 뇌서지 보호용 접지시스템에서는 인덕턴스를 줄이는 방향으로 접지그리드의 형태와 규모를 결정하는 것이 필수적이다.

대규모 그리드 접지전극의 과도접지임피던스의 측정 (The transient grounding impedance measurment of large grid grounding electrodes)

  • 전병욱;이수봉;이봉;이승주;정동철;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.69-72
    • /
    • 2008
  • This paper presents the transient and conventional grounding impedance behaviors of large grid grounding system associated with the injection point of impulse current The measurement methods consider two possible errors in the grounding-system impedances: (1) ground mutual resistance due to current flow through ground from the ground electrode to be measured to the current auxiliary, (2) ac mutual coupling between the current test lead and the potential test lead The test circuit was set to reduce the error factors. The transient grounding impedance depends on the rise time and injection point of impulse current It is effective that grounding conductor is connected to the center of the large grid grounding system.

  • PDF

Active Damping of LLCL Filters Using PR Control for Grid-Connected Three-Level T-Type Converters

  • Alemi, Payam;Jeong, Seon-Yeong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.786-795
    • /
    • 2015
  • In this paper, an active damping control scheme for LLCL filters based on the PR (proportional-resonant) regulator is proposed for grid-connected three-level T-type PWM converter systems. The PR controller gives an infinite gain at the resonance frequency. As a result, the oscillation can be suppressed at that frequency. In order to improve the stability of the system in the case of grid impedance variations, online grid impedance estimation is applied. Simulation and experimental results have verified the effectiveness of the proposed scheme for three-phase T-type AC/DC PWM converters.

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

대전류 임펄스에 대한 소규모 메쉬전극의 과도접지임피던스 특성 (Characteristics of Transient Ground Impedance of a Scaled Grounding Grid on the High Current Impulse)

  • 이태형;조성철;엄주홍;유양우;이복희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1418_1419
    • /
    • 2009
  • This paper presents the transient impedance when high current impulse up to 5 kA is applied to a scaled grounding grid in test field. For a realistic analysis of transient impedance on the high current impulse in the ground systems, grounding electrode installed outdoors and impulse current generator was used. The results were discussed based on its voltage and current trace, impulse impedance and V-I curve.

  • PDF

단상 계통연계 인버터의 SRF 전력제어 방법 (A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems)

  • 박한얼;김은석;송중호
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.129-135
    • /
    • 2010
  • 화석에너지의 고갈과 환경오염 문제를 해결하기 위한 대안인 신재생 에너지를 이용하는 분산발전 시스템은 핵심 구성 요소인 PWM 인버터의 전력제어가 요구된다. 본 논문에서는 단상 계통연계 인버터 시스템의 전력제어를 위해 계통 임피던스를 고려한 SRF(synchronous-reference-frame) 전력제어 방법을 제안한다. 제안한 SRF 전력제어 방법은 복잡한 계통 임피던스의 추정 없이 계통 임피던스의 공칭값(nominal value)에 기반해 단상 인버터에 전압 기준값(reference)을 제공하여 독립운전 모드와 계통연계 모드에서 모두 운전이 가능함을 나타내었다. 또한, 유효전력과 무효전력의 독립적인 제어가 가능한 장점을 가진다. 계통을 포함하는 시뮬레이션을 통해 제안한 SRF 전력제어 방법의 타당성을 검증한다. 시뮬레이션 결과는 제안한 SRF 전력제어 방법을 통해 단상 계통연계 인버터 시스템의 전력 흐름을 적절히 제어할 수 있음을 보여주고 있다.

고저항 지락사고에 대한 태양광 발전의 영향분석 (Impact Analysis of a Grid-connected Photovoltaic system on High Impedance Fault)

  • 김상협;서훈철;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.476_477
    • /
    • 2009
  • This paper compares the several cases with High Impedance Fault(HIF) conditions and analyzes the impact of the grid-connected photovoltaic system at the HIF conditions. Simulations are conducted by using Electro-Magnetic Transient Program (EMTP) and using the results, the analysis is presented.

  • PDF

접지그리드의 접지임피던스 측정 기법 (Measurement method of ground impedance for the grounding grid)

  • 이복희;최종혁;최영철;유재덕;백영환;김동성;신희경;유양우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1487_1488
    • /
    • 2009
  • In these days, the common grounding systems are adapted in most large structures. In order to evaluate the performance of grounding system, it is needed to measure ground impedance. Measuring methods of ground impedance for a large scale grounding systems have not been yet presented in detail. In this paper, we analyze earth mutual resistance and mutual coupling of $15{\times}15m$ grounding grid in different arrangements of auxiliary electrode. As a results, the auxiliary electrodes are installed where the error rate due to earth mutual resistance is less than 5%. Also, the potential lead is installed at obtuse angle from the current lead and the overlapped length between potential lead and grounding grid are minimized.

  • PDF

직병렬 임피던스 보상을 통한 계통 연계 분산전원 인버터의 PCC 무효전력 제어 알고리즘 (Reactive Power Control Algorithm of Grid-Connected Inverter at the Point of Common Coupling With Compensation of Series and Parallel Impedances)

  • 허철영;송승호;김용래
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.92-99
    • /
    • 2022
  • Due to space and geographical constraints, the power source may be located outside the island area, resulting in the considerable length of transmission line. In these cases, when an active power is transmitted, unexpected reactive power is generated at a point of common coupling (PCC). Unlike the power transmitted from the power generation source, the reactive power adversely affects the system. This study proposes a new algorithm that controls reactive power at PCC. Causes of reactive power errors are separated into parallel and series components, which allows the algorithm to compensate the reactive current of the inverter output and control reactive power at the PCC through calculations from the impedance, voltage, and current. The proposed algorithm has economic advantages by controlling the reactive power with the inverter of the power source itself, and can flexibly control power against voltage and output variations. Through the simulation, the algorithm was verified by implementing a power source of 3 [kVA] capacity connected to the low voltage system and of 5 [MVA] capacity connected to the extra-high voltage system. Furthermore, a power source of 3 [kVA] capacity inverter is configured and connected to a mock grid, then confirmed through experiments.