• Title/Summary/Keyword: Grid connected PV system

Search Result 234, Processing Time 0.038 seconds

The 3-phase Inverter for Grid Connected PV Generation System (3상 계통 연계형 태양광 발전 시스템용 인버터)

  • Jeong, Jin-Beom;Kim, Hee-Jun;Baek, Soo-Hyun;Lee, Ju;Ahn, Kang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.161-163
    • /
    • 2005
  • The capability of unity-interactive type in PV generation system depends on its use. In a house, needs such a small capability, a single-phase output of PV can afford. But 3-phase output of PV is required in a case of big capabilities or a PV system directly interactive to 3-phase grid. To verify a validness of a large capable distributed-generation system supplied the proposed method, a 10kW inverter was realized in this paper. And from the results, the system is confirmed its stable operation and validness.

  • PDF

An analysis on the operating characteristics of 50kW Photovoltaic Power System (50 kW급 계통연계형 태양광 발전시스템 장기 실증 운전)

  • Kim, Y.S.;Ahn, K.S.;Lim, H.C.;Oh, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1788-1790
    • /
    • 2005
  • In this paper, an operating characteristics of a 50 kW gird-connected photovoltaic(PV) power system was analysed from 2000 to 2004. The construction of the PV system includes a 3-phase inverter for grid connection, PV module, distribution box, and data monitoring system. The major results of the demonstration test of the 50 kW class gird-connected PV system showed that efficiency of PV system was 11.13%, and the conversion efficiency of the inverter was 92% at a 50% load.

  • PDF

A Study for Design and Operational Features of Grid-Connected 30kW PVIB (30kW PVIB의 설계 및 구동특성에 관한 연구)

  • Park, Se-Joon;Yoon, Jeong-Phil;Choi, Hong-Jun;Shin, Yeong-Shik;Cha, In-Su;Kim, Dong-Mook;Lim, Jung-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.80-85
    • /
    • 2008
  • A PVIB(Photovoltaic in Building) system is united by a constituent outer covering and can expect dual effects that reduce expenses for the establishment of a PV system. It is a profitable technology because it does not need a building as it is a stand alone PV system. This paper presents design, operational features analysis, and PCS(Power Conditioning System) of grid-connected 30kW PVIB set up on the library of Dongshin University. For a sustainable photovoltaic system in this area, the data of the PVIB system are collected and analyzed by monitoring system using LabView. PCS of the grid-connected PVIB system, also, is designed for optimal operation with characteristics suggested in this paper.

  • PDF

Anti-islanding using Active Frequency Shake Method for Grid-connected PV Generation System (계통연계형 태양광발전시스템의 AFS 기법을 이용한 단독운전 방지)

  • Ock, Seungkyu;Kang, Moonsung;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.127-136
    • /
    • 2013
  • The islanding detection and prevention function in the important performance of the grid-connected inverter is the essential details which should be considered for worker's safety to maintain the system. This paper tries to suggest the active frequency shake islanding detection technique in the grid-connected PV generation system using sunlight. The existing active frequency drift method algorithm is described to suggest active frequency shake method algorithm. And, the algorithm which can reduce the non-detection zone, improve THD, and improve the detection speed in comparison with the existing algorithm is suggested. And we applied the proposed algorithm to the 3kW grid-connected photovoltaic inverter generation and verified the feasibility of the technique through the simulation and experiments.

The Economics Evaluation of Grid-connected Photovoltaic Systems in Residential Houses

  • Lee, Hyun-Seung;Kim, Sung-Bum;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2015
  • Purpose: To evaluate the economic performance of grid-connected photovoltaic system in residential house, household electricity bill policy of Korea Electric Power Corporation (KEPCO) must be applied precisely, and market tendency and uncertainty of system also need to be considered. In this study, to evaluate the economic feasibility of PV system, we measured PV power generation and electricity consumption of six of Green home in Daejeon through web based remote monitoring system. Method: We applied Monte-Carlo simulation based on life cycle cost analysis, to reflect an uncertainty of main factor in economic feasibility evaluation of photovoltaic system. Result: First, with deterministic analysis, the difference of NPV of cumulative financial savings among households varied from -3,310 ~ 24,170 thousand won, portraying notably big range. Also the possibility of getting the same result was 50% when applying uncertainty. Second, the higher electricity consumption is, the more economic feasibility of photovoltaic system increases because KEPCO uses progressive taxation in household electricity bill policy. Third, The contribution to variance of electricity price increases in NPV varied from 98.5% to 99.9%. While the inflation rate and annual degradation contributed very little to none.

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

A Study of the PV System for Optimum Design Methods With Loss Parameter Compensation

  • Lee, Kang-Yeon;Choi, Moon-Han;Choi, Youn-Ok;Joeng, Byeong-Ho;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.64-75
    • /
    • 2007
  • Photovoltaic systems utilize the infinite clean energy of the sun, without creating any air pollution or noise and mechanical vibration. A PV system operates without the need of fuel, rotation surfaces, high temperatures or high pressures. It is therefore to do maintain and simple to install as well as having a long life cycle. The global market for PV systems continues to grow rapidly by 30[%] per year. This paper suggests a new design method for the PV system installation that will allow to the improvement of system efficiency. This method is in accordance with the loss parameter compensation method designed for the PV systems and investigated through simulation and practical experimentation. It was applied to an interconnected 10[kW] grid PV system and was demonstrated in the field. Features such as solar array, PCS, system efficiency, performance and stability were considered. Through the proposed optimal parameter design method, the features of the system were studied, and the 10[kW] PV system was demonstrated and analyzed.

The Elimination Method of Ripple Voltage for a Single Grid-Connected PV System (단상 계통연계형 태양광 발전시스템의 맥동전압제거 기법)

  • Lee, Jae-Geun;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.406-407
    • /
    • 2011
  • The dc link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current, and according to the problem, power quality is lower. This paper proposes the new method for removing ripple voltage. The performance was verified through computer simulation using MATLAB.

  • PDF

Detection Performance and THD Analysis of Active Frequency Drift for Anti-Islanding (단독운전 방지를 위한 능동적 주파수 변환 기법의 검출 성능 및 THD 분석)

  • Jo, Yeong-Min;Choi, Ju-Yeop;Song, Seung-Ho;Choy, Ick;Lee, Young-Kwoun
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Islanding is a phenomenon that EPS(Electric Power System) is continuously energized by PV PCS(Photovoltaic Power Conditioning System) even when EPS is isolated from the grid. Unintentional islanding will result in safety hazard, power quality degradation and many other issues. So, islanding protection of grid-connected PV PCS is a key function for standards compliance. Nowadays, many anti-islanding schemes are researched. But existing anti-islanding schemes used in PV PCS have power quality degradation and non-detection zone issues. This paper analyses not only detection performance of existed anti-islanding schemes using active frequency drift but also THD of PCS output current according to each value disturbance for anti-islanding. In addition, the lowest value of disturbance in each scheme was tabulated under guarantee of anti-islanding condition.

Proposal of the Grid-connected Single Phase PCS including the Function of Active Filter (엑티브 필터 기능을 갖는 계통연계형 단상 태양광 발전시스템의 제안)

  • Jang, Seong-Jae;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Sang-Soo;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1077-1078
    • /
    • 2008
  • The growing number of nonlinear loads such as static power converters has posed a problem on the quality of electric power supply. The active filters (AF) have been rapidly expanding with the advancement of power electronics technology. The purpose of the active filters is to compensate current harmonics and/or current imbalance. The authors have studied and introduced the PV-AF system; the PV power system, which is used widely as a dispersed source, including the function of active filter to compensate the harmonics caused by nonlinear loads. The PV-AF system has merits not only to compensate harmonics caused by nonlinear loads but also to increase the utilization of PCS. This paper describes the grid-connected single phase PV-AF system and the PSCAD/EMTDC simulation results.

  • PDF