• Title/Summary/Keyword: Greenhouse Gas Reduction

Search Result 645, Processing Time 0.023 seconds

Effect of Added NH$_3$ to AMP on Absorption Rate for Simultaneous Removal of CO$_2$/NO$_2$ in Composite Absorption Process (복합흡수공정에서 CO$_2$/NO$_2$ 동시제거 시 AMP(2-amino-2-methyl-1-propanol)에 Ammonia 첨가가 흡수속도에 미치는 영향)

  • Seo, Jong-Beom;Choi, Won-Joon;Moon, Seung-Jae;Lee, Gou-Hong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2008
  • In this study, a blend of 2-amino-2-methyl-1-propanol (AMP) and ammonia (NH$_3$) was used to achieve high absorption rates for carbon dioxide (CO$_2$) as suggested at several literatures. The absorption rates of aqueous AMP and blended AMP+NH$_3$ solutions with CO$_2$ and nitrogen dioxide (NO$_2$) were measured using a stirred-cell reactor at 303 K. The effect of the added NH$_3$ to enhance absorption characteristics of AMP was studied. The performances were evaluated under various operating conditions. The absorption rates increased following the increase of the concentration of NH$_3$. The absorption rate of NH$_3$ blended into 30 wt.% AMP solution with NO$_2$ at 303 K was 12.6$\sim$32.6% higher than that of aqueous AMP solution without NH3. Also, the addition of 3 wt.% NH$_3$ to 30 wt.% AMP increased 48.2$\sim$41.6% values for the reactions with CO$_2$ and NO$_2$ at 303 K. Therefore, it clearly shows that the reaction rate of AMP with CO$_2$ and NO$_2$ can be increased by the addition of NH$_3$.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

Analysis of Energy Savings and CO2 Emission Reductions via Application of Smart Grid System (지능형 전력망(스마트 그리드) 적용을 통한 에너지 절감 및 CO2 감축 효과 분석)

  • Park, Soo-Hwan;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.356-370
    • /
    • 2017
  • The energy savings and $CO_2$ emission reductions obtainable from the situation that the Smart Grid system (SGs) is assumed to be applied in Korea up to 2030 is quantitatively analyzed with many reported data. For calculation, SGs is divided into five sectors such as Smart Transmission and Distribution (ST&D), Smart Consumer (SC), Smart Electricity Service (SES), Smart Renewable Energy (SRE) and Smart Transportation (ST). Total annual energy savings in 2030 is estimated to be approximately 103,121 GWh and this is 13.1% of total electricity consumption outlook. Based on this value, total amount of reducible $CO_2$ emissions is calculated to 55.38 million $tCO_2$, which is 17.6% of total nation's GHG reduction target. Although the contribution of energy saving due to SGs to total electricity consumption increases as years go by, that of $CO_2$ emission reduction gradually decreases. This might be because that coal fired based power generation is planned to be sharply increased and the rate of $CO_2$ emission reduction scheduled by nation is very fast. The contributable portion of five each sector to total $CO_2$ emission reductions in 2030 is estimated to be 44.37% for SC, 29.16% for SRE, 20.12% for SES, 5.11% for ST&D, and 1.24% for ST.

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji (마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구)

  • Jung, Tae Yong;Hyun, Jung Hee;Lee, Seul;Huh, Minkyung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.

Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract (발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro)

  • Marbun, Tabita Dameria;Song, Jaeyong;Lee, Kihwan;Kim, Su Yeon;Kang, Juhui;Lee, Sang Moo;Choi, Young Min;Cho, Sangbuem;Bae, Guiseck;Chang, Moon Baek;Kim, Eun Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.735-746
    • /
    • 2016
  • This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

Analysis of Greenhouse Gas Reduction according to Different Scenarios of Zero Food Waste Residential Buildings (음식물류폐기물 제로화 주거단지 구축 시나리오별 비용 및 환경효과 분석)

  • Oh, Jeong-Ik;Yoon, Eun-Joo;Park, Ire;Kim, Yeong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.353-363
    • /
    • 2016
  • In this study, traditional treatment scenario of food wastes that collected and transported food waste is recycled in large treatment facilities and suggested treatment scenario of onsite zero discharge system that food waste is treated in housing complex were supposed. The scenarios were compared and analyzed by capital expenditure, oil consumption, $CO_2$ emission quantity, operating expenditure and management expenses. The capital expenditure, oil consumption and $CO_2$ emission quantity of small scale dispersion dealing method is the lowest compared to traditional treatment method. As a results, it is possible to obtain the effect that operating expenditure was reduced by 91% and management expenses was reduced by 40% with suggested treatment method. The treatment method that have low capital expenditure is tend to lower oil consumption and $CO_2$ emission quantity. The small scale dispersion dealing method have the lowest capital expenditure, oil consumption and $CO_2$ emission quantity and the linked method with sewage treatment have the highest expenditure and $CO_2$ emission quantity. Eventually, the optimal model of onsite zero discharge system in housing complex is small scale dispersion dealing method.

A Comparative Study on the $CO_2$ Storage Method ($CO_2$ 해양처리방안 비교연구)

  • Jung, R.T.;Kang, S.G.;Kang, C.G.;Park, Y.C.;Yoon, C.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • The concentration of atmosphere carbon dioxide ($CO_2$) which is one of the major greenhouse gas, continues to rise by the increase in fossil fuel consumption, forest destruction and decrease of biological diversity, etc. In order to weaken the global warming, a reduction of $CO_2$ discharge to the atmosphere is required. The $CO_2$ ocean sequestration technology utilizes the intrinsic oceanic capacity of $CO_2$ absorption, diluting and/or dispersing the liquefied $CO_2$ in the deep ocean (>2,000 m). This geo-engineering approach is regarded as one of the occasions to mitigate the $CO_2$ concentration in the atmosphere. Some developed centuries such as Japan, USA, Norway, etc. have intensively carried out the projects on the research and development of $CO_2$ ocean sequestration since 1990s. There have been several approaches to develop the relative technological system to mitigate the increasing $CO_2$, however, there was no systematic and practical R&D programme in the $CO_2$ ocean sequestration. This paper has described the state of the art on the three optional methods of $CO_2$ sequestration, and compared with them in the aspect of the applicable possibility.

  • PDF

Evaluation of Environmental Stress for Highway Construction Project by Life Cycle Assessment Method (전과정평가기법에 의한 도로건설공사 환경부하량 평가 연구)

  • Moon, Jinseok;Ju, Kibeom;Seo, MyoungBae;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.83-91
    • /
    • 2014
  • The global community demands the reduction of environmental pollution such as greenhouse gas and carbon dioxide emissions. According to these requirements, the road construction project in the highest energy consuming industry is required the efficient way of reducing environmental pollution emissions. In this study, during the whole life cycle process, an environment impact assessment was performed for the several road construction projects in order to evaluate environmental stress through the road construction process. This study provides a proper process of environment impact assessment for life cycle assessment (LCA) analysis of road construction project, and figures the environmental stress regarding to the major construction materials for the case projects. In addition, this study conducted a sensitivity analysis for the key materials of environmental stress through the quantity analysis of major materials for the 1km section of a road construction. By this sensitivity analysis of total environmental stress change from the different volumes of constructing materials, it would be useful information for the environment impact assessment for the future road construction project.

Development and its Application for Energy Efficiency Operation Indicator and Energy Efficiency Design Index Monitoring System on the Ship (선박의 에너지효율운전지표와 에너지효율설계지수의 모니터링 시스템 개발과 그 응용)

  • Lee, Don-Chool;Kim, Eoue-Sek;Joo, Ki-Se;Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.500-507
    • /
    • 2010
  • Regard to the global warming, the shipping industries are progressed the dedicated endeavor to reduce greenhouse gas. As the study results of 2009 GHG study team, the $CO_2$ emission of shipping industries exceeded slightly 1.0 billion ton during one year(2007) and it is 3.3% of total $CO_2$ amount exhausted from all industries. This paper are introduced the energy efficiency design index / operation indicator monitoring system(EDiMS) which matched with EVAMOS software released by the dynamics laboratory of Mokpo maritime university. EDiMS can continuously be monitored amounts of $CO_2$, NOx, SOx, and PM emitted from ship and it can be applied as the useful tool of the inventory work of air pollution and the ship energy management plan for the mitigation or reduction of ship emission.

A study on the promotion for rail transport in Ui-Wang ICD (의왕 ICD 철도수송 활성화 방안에 대한 연구)

  • Yun, Dong-Hee;Lee, Yong-Sang
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1603-1614
    • /
    • 2010
  • As the Kyoto protocol and Bali road-map, our country is expected to be included to the emission reduction controlled country of greenhouse gas, so we are now urgent situation to take an action in the level of government. In this research, environment friendly rail logistics and combined transport were treated to meet with the green growth policy of our government. Major problems of Ui-wang ICD suggested in this research are short of yards, unutilized public CY, inconvenience use by non-share holders. It is necessary to improve rail logistic infrastructure, that is, additional expansion of yard, direct operation by KORAIL and regular unloading system are needed. such improvement can not be solved just by the endeavor of business body. Rail logistic infra & Integrated freight terminal has a tendency of SOC, which require tremendous amount of investment, so there are some limit in doing by private sector itself, now it's time to do by the government level. The improvement of rail logistic infrastructure in the level of government is possible by the policy of environment friendly green logistic support which is related with Logistic Policy Basic Law, so government should prepare detailed directives to activate Integrated freight terminal.

  • PDF