DOI QR코드

DOI QR Code

마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji

  • 정태용 (연세대학교 국제학대학원) ;
  • 현정희 (연세대학교 국제학대학원) ;
  • 이슬 (연세대학교 국제학대학원) ;
  • 허민경 (연세대학교 국제학대학원)
  • Jung, Tae Yong (Graduate School of International Studies, Yonsei University) ;
  • Hyun, Jung Hee (Graduate School of International Studies, Yonsei University) ;
  • Lee, Seul (Graduate School of International Studies, Yonsei University) ;
  • Huh, Minkyung (Graduate School of International Studies, Yonsei University)
  • 투고 : 2017.05.31
  • 심사 : 2017.08.02
  • 발행 : 2017.08.31

초록

오늘날 대부분의 국가는 기후변화 문제에 직면해 있으며, 특히 군소도서개발국들(SIDS: Small Island Developing States)은 기후변화의 영향에 가장 취약하다. 이들은 전력생산 및 교통부문에 있어 수입된 석유와 화석 연료에 크게 의존하고 있으므로 유가 변동에 따라 경제적으로 매우 영향을 받는다. 군소도서개발국들(SIDS)이 디젤 연료에 의존하는 이유 중 하나는 외딴 섬에 인구가 분산되어 있어서 계통연결을 통한 전력공급이 어렵기 때문이다. 군소도서개발국들 중 피지(Fiji)는 기후변화의 심각성을 인식하고 기후 변화의 영향을 줄이기 위한 '국가계획'을 통해 신재생에너지 사용을 적극 장려하고 있다. 본 연구에서는 피지의 마부바 섬(Mavuva Island)을 대상으로 HOMER 프로그램을 사용하여 태양광, 에너지저장장치 및 디젤 발전의 조합을 통하여 최적의 에너지 시스템을 시뮬레이션하고 분석한다. 태양광과 디젤 발전을 합친 하이브리드 에너지시스템이 이 지역의 실행가능성 및 가격 측면에서 가장 효과적이고, 온실가스 감축효과도 큰 것으로 파악되었다.

Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.

키워드

참고문헌

  1. Adkins L, Garbaccio R, Ho M, Moore E, Morgenstern R. 2012. Carbon Pricing with Output-Based Subsidies: Impacts on U.S. Industries over Multiple Time frames. National Center for Environmental Economics.
  2. Ajal K, Krishna N. 2013. Wind Power Potential at Benau, Savusavu, Vanua Levu, Fiji. International Journal of Energy, Information and Communications. 4(1): 51-62.
  3. Charan V. 2014. Feasibility Analysis Design of a PV Grid Connected System for a Rural Electrification in Ba, Fiji. International Conference on Renewable Energy Research and Applications; 2014 Oct 19-22; Milwaukee (USA).
  4. Dornan M, Jotzo F. 2011. Electricity generation in Fiji: Assessing the Impact of Renewable Technologies on Costs and Financial Risk. Australian Agricultural and Resource Economics Society 55th Annual National Conference; 2011 Feb 8-11; Melbourne (Australia).
  5. Dornan M. 2011. Solar-based Rural Electrification Policy Design: The Renewable Energy Service Company (RESCO) Model in Fiji. Renewable Energy Journal 36: 797-803. https://doi.org/10.1016/j.renene.2010.07.015
  6. Diesel Price [Internet]. 2017. The German Agency for International Cooperation. [Cited 2017 July 07]. Available at: https://www.giz.de/expertise/html/4317.html
  7. EIA. 2009. Energy Market and Economic Impacts of H.R. 2454, the American Clean Energy and Security Act of 2009. SR-OIAF/2005-05. Washington, DC: EIA.
  8. Global Petroleum Prices. [Cited 2017 May 14]. Available at: http://www.globalpetrolprices.com/Fiji/diesel_prices/
  9. HOMER(R) Pro Version 3.7. Manual. 2016. HOMER(R) Energy.
  10. Jung TY, Kim YT, Hyun JH. 2017. An Economic Analysis of a Hybrid Solar PV-Diesel-ESS System for Kumundhoo, Maldives. Korea and the World Economy. 18(S1): 109-134.
  11. Lal S, Raturi A. 2012. Techno-economic Analysis of a Hybrid Mini-grid System for Fiji Islands. International Journal of Energy and Environmental Engineering. 3(10): 1-10. https://doi.org/10.1186/2251-6832-3-1
  12. Lambert T, Gilman P, Lilienthal P. 2006. Micropower system modeling with HOMER. Integration of alternative sources of energy. 1(15): 379-418.
  13. Luckow P, Stanton E, Fields S, Biewald B, Jackson S, Fisher J, Wilson R. 2015. 2015 Carbon Dioxide Price Forecast. Synapse Energy Economics, Inc. [Cited 2017 May 15]. Available at http://www.synapse-energy.com/sites/default/files/2015%20Carbon%20Dioxide%20Price%20Report.pdf
  14. Mavuva Island: Great Sea Reef Fiji [Internet]. [Cited 2017 May 01]. Available at: http://www.mavuvaisland.com/vanua-levu.php.
  15. Markets Insider [Internet]. $CO_2$ European Emissions Allowances. [Cited 2017 July 07]. Available at http://markets.businessinsider.com/commodities/co2-emissionsrechte
  16. Nand R, Raturi A. 2013. Feasibility Study of a Grid Connected Photovoltaic System for the Central Region of Fiji. Applied Solar Energy. 49(2): 110-115. https://doi.org/10.3103/S0003701X13020096
  17. Palit D, Chaurey A. 2011. Off-grid Rural Electrification Experiences from South Asia: Status and Best Practices. Energy for Sustainable Development. 15: 266-276. https://doi.org/10.1016/j.esd.2011.07.004
  18. Sureshkumar U, Manoharan PS, Ramalakshmi APS. 2012. Economic Cost Analysis of Hybrid Renewable Energy System using HOMER. ICAESM. 2012 Mar 30-31. Tamil Nadu (India).
  19. UNDP. 2014. Integrated Sustainable Rural Development: Renewable Energy Electrification and Rural Productivity Zones. New York: United Nations Development Programme.