• Title/Summary/Keyword: Green house gas

Search Result 270, Processing Time 0.023 seconds

Numerical Study of a Droplet Movement for the Ocean $CO_2$ Sequestration ($CO_2$해양처리를 위한 액적 거동 시뮬레이션 기초연구)

  • Jung Rho-Taek;Kang Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • In the situation which Russia's ratification of the Kyoto protocol at February,2004, ANNEX I nations must reduce GHG(Green House Gas) discharge rate from 2008 by 2012 to the reduction level at 1990. We introduce the CO₂ ocean sequestration that is one of promising method for getting the stable CO₂ concentration in the atmosphere. There are four categories : ocean transportation technique, ocean initial dissolution technique, ocean deep current evaluation technique, and ocean biological evaluation technique. In this paper, we carried out the fundamental numerical study on the ocean initial dissolution technique, when the Liquidized CO₂ is emitted at the deep ocean, It is very important to the dissolution rate of movable CO₂ interface because it Is directly impact to the ocean organism. In order to investigate the relation of the interface movement and rate of the dissolution, we develope CR(Computational Fluid Dynamics) code that was constructed by the finite volume method based on the unstructured mesh, and a droplet's boundary surface can move and one direction dissolution from disperse phase into continuous phase adopted as its physics be. This study clarifies hydrodynamic relation between solubility and movement of the droplet through the verification of the Cm code.

  • PDF

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

A Study of the Combination Method for Earthwork Equipments Using the Environmental Loads and Costs (토공사 환경오염물질 부하량 및 공사비를 이용한 장비조합방법 연구)

  • Kang, Min-Ho;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1215-1224
    • /
    • 2013
  • Great efforts have been made worldwide to reduce the Green House Gas (GHG) emission following the "Kyoto Protocol" declared during the United Nations Framework Convention on Climate Change in 1997. Many industries have restructured to meet the standard set by the Protocol. However, no clear guidance has been established for the purpose of reducing the GHG emission in construction industry. In addition, no significant effort has been made to conserve the energy during construction activities. For more effective energy saving in construction industry, it is essential to collect data about energy consumption, quantity of environmental emissions and costs. However, most studies on sustainable construction have been concentrated on the use of equipment, maintenance and repair works during construction due to the difficulties of collecting such data. This study suggests a method to select the most environmentally friendly equipment combination for earthwork with comparing environmental loads and costs using the database of Life Cycle Inventory in the Ministry of Knowledge Economy and Ministry of Environment of Korea.

A Study on CDM Possibility Assessment of Transport Sector (교통부문 청정개발체제(CDM) 사업화 가능성 평가)

  • Park, Jin Young;Kim, DongJun;Oh, Seung Hwoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.175-184
    • /
    • 2011
  • Transport sector takes charge of about 20 percent of energy consumption and GHG(Green House Gas) emission in Korea. One of the efficient strategy of reducing GHG is introducing CDM(Clean Development Mechanism), which is one of GHG reduction systems in Kyoto Protocol. Nowadays many tries have done to regist transport policies as CDM in transport sector, however, a lot of things should be investigated to regist CDM in advance. The aim of this paper is assessment of CDM possibility in transport sector. First of all, we review steps and criteria to CDM registration, and select 4 CDM possibility assessment index in transport sector: as follows additionality, methodology, emission calculation, and monitoring. Also, we analyze registed projects and methodologies in transport sector. To assess CDM possibility in transport sector, quantitative and qualitative assessments are carried out in this study. 18 transport policies are categorized as 4 groups and possibility of 18 transport policies are examined. Several policies can reduce GHG, however, they are not fit to regist as a CDM. On the contrary many transport policies have possibility to regist. In addition, we have done questionnaire survey, 'fuel change' policies have high possibility to CDM. However transport policies related to haman activity, like as TOD, have lower possibility. As a result, we can find that enough CDM possibility assessment should be carried out before CDM registration in transport sector.

An Analysis of Decision Making Process in Voluntary Reducing Private Car Use (자발적 자가용 이용 저감의 의사결정과정 분석 연구)

  • Lee, Backjin;Kim, Joon-Ki;Yi, Choonyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.679-689
    • /
    • 2013
  • To relieve Green-house Gas Emission is the key issue in urban area. Urban transport policies have focused on the reduction of private car use. The most common of these is Travel Demand Management(e.g., congestion charge, environmental tax, etc.) that forces individuals to reduce their private car use. An alternative way is Mobility Management(MM) that induces individuals to voluntarily change their car use through communications. MM is founded on social psychology theory and focuses on individuals' decision making processes to change their perception and attitude on private car use. Although some researchers have reported the relevance of MM approach, still few researches have explicitly studied on individuals' decision making processes. Therefore, the aims of the paper are to analyze the decision making process of individuals and to provide the basis of introducing MM approach in Korea. Structural equation model(SEM) is applied for the analysis of individuals' decision making process. A empirical study shows that psychological factors such as perception/attitude on global environment or individual norms impact significantly to reduce private car use and accordingly the relevance of introducing MM approach instead of imposing regulations or expanding transport facilities.

A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries (반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구)

  • Jang, Sung-Su;Han, Jae-Kook;Cho, Hyun-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.88-95
    • /
    • 2017
  • The usage of toxic gas in Korea is increasing in the development of high-tech industries such as semiconductors, displays and solar panels. The recent survey of domestic toxic gas consumption indicates an increase in annual average of 12.4 percent, but it is still focused on usage, and it is negligent in safety and treating the post. In September 2012, an accident occurred in Gu-mi involving hydrofluoric acid leak demonstrates the absence of safety management. Due to the incident, the government, industry and academia have been interested in chemical substances(toxic gas), and the government-led safety management has been established and implemented, but there are still a lot of safety blind spots. The purpose of this study is to develop effective measurement methods for the destruction or removal efficiency of gaseous materials emitted from the Scrubber used in the semiconductor and display industries. Also, this study demonstrated how toxic gas facilities can be applied without error by verification test for the measurement method guideline of the destruction or removal efficiency of the green-house gas reduction facility in the semiconductor and display industries used by the National Institute of Environmental Research and the UNFCCC, and suggested the differentiated measurement methods for toxic gas reduction facilities, and the third party certification for safety facilities is needed to prevent toxic gas accidents.

An Empirical Analysis on Correlation between Carbon Emission and Urban Spatial Structure (도시공간구조와 탄소배출량간 상관관계 실증 분석)

  • Ryu, Yoon-Jin;Sohn, Se-Hyoung;Kim, Do-Nyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.273-281
    • /
    • 2012
  • The government is carrying forward a sustainable development which reduces green-house gas and environmental pollution by preparing 'Low Carbon Green Development' policy basis as a new paradigm of national development. This study aims to understand the status of atmosphere contamination which Seoul has by finding correlation among social, economical indexes and carbon, the humanities and social characteristic materials which best express types of city and correlation and to suggest implications. According to the results of the analysis, first the carbon emission volume of Seoul recorded 0.56 ppm, Jongno, Jung-Gu, Kuro, Kangnam and Songpa were more than the average of Seoul and Kwangjin-Gu & Kangbuk-Gu, relative north east regions, Yeongdeungpo-Gu and Dongjak-Gu, south west regions showed lower CO occurrences. Second, according to the correlation and factor analysis, elements which affect CO emission volume of Seoul are largely represented by regional level, traffic level and development density level. Third, when the importance of influence factors based on the analyzed standard coefficient by a regression model, traffic and development density level were most important by recording traffic level (0.967), environmental level (0.385), regional level (0.530) and development density (0.561). Consequently, it was revealed that the traffic level most affected CO emission.

A study on appropriate ship power system for pulse load combine with secondary battery (펄스부하에 적합한 이차전지 연동형 선박 전력시스템에 관한 연구)

  • Oh, Jin-Seok;Lee, Hun-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.962-968
    • /
    • 2013
  • Problem of greenhouse gases associated with global warming and the world rise in fuel oil prices due to the depletion of fossil fuel has attracted attention. For this reason, maritime transport business, has shown interest in green-ship technology to reduce the consumption of fuel and reduce greenhouse gas for environmental protection. Power system of the ship is one of the most important factors for safe operation. Therefore, at design of ship power system, most of existing vessel used comparative large capacity generator in order to respond peak load such as bow thruster, crane and etc. In the navigation of ship, marine generators most would be operated at low load operation. In the low load operation of the generation rate of 50% or less, the operation efficiency of the generator it deteriorated, to consume more fuel oil. It also, it means that adversely effect the life of the generator. In this paper, studied how to apply for a secondary battery in container ship that relatively frequent arrival and departure in port. As a result, in order to apply the secondary battery to increase the operating efficiency of the generator during the voyage, it was confirmed that it is possible to reduce fuel consumption.

A study on the operation conditon of Effective Energy Recovery and Greenhouse gas Reduction by the facility using Waste / Biomass fuel (폐기물 및 바이오매스 연료 사용시설의 효율적 에너지회수 및 온실가스 감축을 위한 운전조건에 관한 연구)

  • Joo, Won Hyeog;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • The economic issue of the period of return versus investment has emerged to efficiently utilize the thermal energy of public resource recovery facilities using waste and private thermal source facilities using BIO-SRF. Accordingly, the optimum temperature and pressure facilities are required beyond the traditional designed, constructed and operated. In this study, we analyzed current energy output by different heat and pressure model in domestic facilities, and calculated the characteristics of green-house gas emission. In order to, utilize the thermal energy producing facilities using waste and biomass fuel more efficiently, it is temperature and pressure, which will lead to more lucrative investment and return as well.

Reduction of Nitrous Oxide Emission by EGR Method on Diesel Engine (디젤엔진에서 배기가스 재순환 방법을 이용한 아산화질소의 배출률 저감)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.16-21
    • /
    • 2015
  • Nitrous oxide($N_2O$) concentration in the atmosphere has been constantly increased by the human activities with industrial growth after the industrial revolution. One of factors to increase $N_2O$ concentration in the atmosphere is the $N_2O$ emission caused by the combustion of marine fuel. Especially, a sulfur component included in marine fuel oils is known as increasing the $N_2O$ formation in diesel combustion. Form this point of view, $N_2O$ emission from a ship is not negligible. On the other hand, Exhaust gas recirculation(EGR) that have thermal, chemical and dilution effect is effective method for reducing the NOx emission. In this study, an author investigated $N_2O$ reduction by using EGR on a direct injection diesel engine. The test engine was a 4-stroke diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of the engine was a fixed load of 75%. The experimental oil was a blend-fuel that were adjusted with sulfur ratio of 3.5%, and EGR ratio of 0%, 10%, 20% and 30%. In conclusion, diesel fuel that contained 3.5% sulfur component increased $SO_2$ emission in exhaust gas, and increment of EGR ratio reduced NO emission. Moreover, $N_2O$ emission was decreased as over 50% at EGR ratio of 10% and reduced 100% at EGR ratio of 30% compared with $N_2O$ emission of 0% EGR ratio.