• Title/Summary/Keyword: Green Function Method Green

Search Result 386, Processing Time 0.027 seconds

Numerical Experiments using Efficient FMM for the EM Scattering by Underground Object (지하물체 탐지를 위한 FMM 기반의 효율적인 수치 해석 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1790-1795
    • /
    • 2009
  • For GPR(Ground Penetrating Radar) applications, an accurate analysis of the scattered field is necessary to identify the unknown target. Dyadic Green's function of the multilayered medium is developed and applied to analysis of the underground conducting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM). To reduce the computational complexity, fast multipole method is introduced and we showed the accuracy of the method comparing with the conventional method of moment. For investigating the underground conducting target, several numerical experiments were accomplished using this method.

Numerical Modeling of Elastic Wave Scattering in an Isotropic Medium Containing an Orthotropic Inclusion (직교이방성 함유체를 포함하는 등방성 기지에서의 탄성파 산란 수치해석 모델)

  • Lee, Jung-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.69-79
    • /
    • 2001
  • A volume integral equation method(VIEM) is applied for the effective analysis of elastic wave scattering problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only the Green's function for the unbounded isotropic matrix is Involved In their formulation for the analysis. nis new method can also be applied to general two-dimensional elastodynamic problems with arbitrary shapes and number of anisotropic inclusions. Through the analysis of plane elastodynamic problems in unbounded isotropic matrix with an orthotropic inclusion, it is established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions.

  • PDF

Research on the Urban Green Space Connection Paths forthe Enhancement of Ecological Function - Focused on Suwon - (녹지축의 생태적 기능 강화를 위한 도시녹지 연결경로 도출 연구 - 수원시 대상 -)

  • Choi, Jaeyeon;Kim, Suryeon;Park, Chan;Song, Wonkyong;Jung, Kyungmin;Kim, Eunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.4
    • /
    • pp.201-213
    • /
    • 2022
  • Creation and administration of green space are emphasized to solve the environmental problem and the management of green space in urban area. Urban area with high development pressure faces green space fragmentation, so the planned approach is needed to improve the continuity of green space. However, the current institutional green axis, used to enhance continuity of urban space is merely an abstract concept under the master plan so that is not a consistent framework for urban green continuity providing no detailed information such as position and path. Therefore, in order to consistently manage green space in continuous point of view, it is insufficient not being connected to each individual green space development projects. This study proposes a method for finding the connection path to enhance urban green space continuity. This proposed method consists of two phases. First phase is finding nodes to connect current green space and second is to calculate the least cost path. We calculate connection cost using NDMI (Normalized Difference Moisture Index), impervious ratio and official land cost, applying to Suwon city and potential greening site that was planned in official master plan. According to the results, we confirm a possibility of finding a cost-effective connection path with detailed spatial information instead of unrealistic abstract concepts and discuss worth applying to a legally plan and policy.

2 D Computer Simulation of Laser-Generated Ultrasonic Wave (레이저 여기 초음파의 2차원 컴퓨터 시뮬레이션)

  • Kim, Gyeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1847-1853
    • /
    • 2000
  • A computer simulation technique for 2-dimensional laser generated ultrasonic waves was developed for visualization and investigation of ultrasonic propagation in solids. The technique is similar to a finite difference method (FDM) and a mass-particle model method, but uses a new nodal calculation method based on fundamental consideration of an elastic wave equation. By this method, the propagation behavior oflaser generated ultrasonic wave in thermoelastic and ablation mode is visualized and shows good agreement with previous experimental result or the numerical analysis result by Green function.

Analysis of Rectangular Ring Microstrip Antenna (사각 링 마이크로스트립 안테나 해석)

  • 서동국;박병우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.60-67
    • /
    • 2004
  • In this paper, a rectangular ring microstrip patch antenna has been analyzed by using desegmentation method and evaluation impedance matrices from Green's functions fur rectangular segment and desegmentation method for analysis of planar electro-magnetic structures is discussed. As the rectangular ring cavity could be seen as a structure subtracted a small rectangular cavity from a large one, the overall impedance matrix was obtained by applying a multiport connection method to the individual impedance matrices expressed as a term of Green's function fer rectangular segment. The electromagnetic fields can be solved from a vector potential which is satisfied it's eight boundary conditions. The electric field distribution at each edges was expressed as a histogram table with exciting modes. These results can be used to analyze the operational modes for a rectangular ring microstrip antennas.

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

Analysis of Radiation Pattern of Antenna in Multi-Layered Media (다층매질 중 안테나의 방사패턴 해석)

  • Hwang, Jae-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.677-680
    • /
    • 2008
  • The paper deals with the analysis of radiation characteristics of antenna in the multi-layered media structures. The dyadic Green's function for three layer medium is complex because the Green's functions belonging to the kernel of the integral equation are expressed as Sommerfeld integrals, in which surface wave effects are automatically included. When certain condition are met, the integral can be evaluated approximated by the method of Saddle-point integration. In this study, we propose a method to calculate a radiation pattern for several antennas by using the method of Saddle-point integration. Numerical results show how the radiation characteristics are affected by parameter of dielectric media.

  • PDF

Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis (열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Park, Jong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

Second Order Effect Induced by a Forced Heaving

  • Kim, Won-Joong;Kwon, Sun-Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • In this paper, the $2^{nd}$ order hydrodynamic force effect of heaving submerged circular cylinder is considered, with the linear potential theory. Boundary value problem (BVP) is expanded up to the $2^{nd}$ order by using of the perturbation method and the $2^{nd}$ order velocity potential is calculated by means of integral equation technique using the classical Green's function expressed in cylindrical coordinates. The method of solving BVP is based on eigenfunction expansions. With different cylinder heights and heaving frequencies, graphical results are presented. As a result of the study, the cause of oscillatory force pattern is analyzed with the occurrence of negative added mass when a top of the cylinder gets closer to the free surface.