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I. INTRODUCTION 

In this paper, we introduce a fast method of moments (MoM) 

[1] solution for three-dimensional (3D) perfect electric con-

ducting (PEC) scattering problems. The electric field integral 

equation (EFIE) has been a popular choice. The solution de-

rived from the EFIE has higher accuracy compared to that of 

the magnetic field integral equation (MFIE). However, the 

impedance matrix of MFIE has a better convergence rate when 

solved with an iterative solver. The traditional MoM solutions 

from the EFIE or MFIE suffer from prohibitive 𝑂 𝑁  com-

plexities of memory requirements and CPU time to assemble 

the impedance matrix and perform the matrix-vector multipli-

cation with an iterative matrix solver. For complex structures, 

the convergence of the impedance matrix is a big issue. Many 

researchers are interested in the MFIE formulation having bet-

ter accuracy [2, 3]. 

For electrically large problems, several fast algorithms have 

been developed to overcome these numerical complexities. Mul-

tilevel fast multipole method (MLFMM) [4] is the most pow-

erful algorithm, which has 𝑂 𝑁  and 𝑂 𝑁log𝑁  complexi-

ties for memory and the matrix-vector multiplication time, re-

spectively. However, it has a strong dependence on integral ker-

nels. There are several algorithms that are less kernel-dependent. 

The algebraic methods, such as IE-QR [5] and adaptive cross 

approximation (ACA) [6], have been developed to compress 

merely the impedance matrix. From the physical point of view, 

there are equivalent source approximations and Green’s function  
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approximations, which are both employed on a uniform Carte-

sian grid. Among the equivalent source approximation methods, 

the precorrected fast Fourier transform (p-FFT) [7] and the 

adaptive integral method (AIM) [8] are the most well-known 

algorithms. 

This paper extends an IE-FFT algorithm [9] into the MFIE 

formulation for 3D PEC geometries with closed surfaces. The 

IE-FFT algorithm uses algebraically simple Lagrange polyno-

mials for the free-space Green’s function on a Cartesian grid. 

Through separation variables, the gradient of the Green’s func-

tion consists of one coefficient matrix and two Π  matrices; 

one is for the integrand of the product of the curl of the basis 

functions and Lagrange polynomials, and the other is for the 

integrand of the cross-product of the basis functions and the 

gradient of the Lagrange polynomials. This results in a non-

symmetric MFIE formulation. The proposed algorithm leads 

to 𝑂 𝑁 .  complexity for the memory requirement and 

𝑂 𝑁 . log𝑁  complexity for the matrix-vector multiplication. 

Even though the MFIE has an accuracy problem, it can yield 

reliable solutions with careful treatment. 

This paper is organized as follows. Section Ⅱ provides a de-

scription of the MFIE formulation. The detailed implementa-

tion of the IE-FFT algorithm is described in Section Ⅲ. 

Through numerical examples, Section Ⅳ demonstrates the 

accuracy and performance of the proposed method. Finally, the 

paper is concluded in Section Ⅴ. 

II. MFIE FORMULATION 

The MFIE formulation is briefly shown for an arbitrarily 

shaped 3D PEC object. The formulation is directly used in the 

computation of the near-field correction for the IE-FFT algo-

rithm to ensure its accuracy. The MFIE formulation can be 

written from the boundary condition for the tangential magnet-

ic field on closed surfaces as 
 

       

     

1
ˆ ˆ ;

2

1
ˆ ;

2

h

h

inc h h

h h

n H r J r n g r r J r d

J r n J r g r r d





        

       





      

    
.    

(1)

 

 

To begin with, the discrete Galerkin statement for MFIE is 

shown below: 
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where h  denotes the faceted surface of the PEC object, hX  

is the finite dimensional trial and testing space, and  r
 

 is 

the discrete Galerkin testing function.  
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sidered. For the traditional MoM, Eq. (2) could be expressed as 
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The unknown current density induced on the surface is 
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where  i r
 

 represents surface div-conforming Rao-Wilton-

Glisson (RWG) vector basis functions [10]. The entries of the 

impedance matrix, Z, are given by 
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where N is the number of unknowns; note that supp() indicates 

the finite support of every non-boundary, edge-related basis 

function. Here, ijD  and ijP  are singular and coupling entries 

of the impedance matrix from the discrete Galerkin statement. 

III. IE-FFT ALGORITHM 

The IE-FFT algorithm makes a hexahedron bounding box 

that encloses the entire geometry in Fig. 1. A non-uniform tri-

angular mesh for the RWG basis functions and a uniform Car-

tesian grid for the free-space Green’s functions are shown in 
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two discretizations. Note that α is a constant used to define the 

near-field correction region, and λ is the wavelength. d is the 

sampling resolution. Here, L is the size of the second order 

Cartesian element. 

The details of the IE-FFT algorithm are shown below. 

 
1. A Uniform Cartesian Representation of Free-Space Green’s 

Function using Lagrange Polynomials 

The free-space Green’s function is written in the matrix form: 
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and where the number of grid points is g x y zN N N N   . 

Also, the dimensional indices could be expressed as n  

 , ,i j k and  , ,n i j k    , where 0 , xi i N  , 0 ,  j j

 yN , and 0 , yk k N  . The thp  order interpolation basis 

functions, p
n , are the 3D tensor products form of the one-

dimensional piecewise Lagrange polynomials on a Cartesian 

grid: 
 

 
Fig. 1. Two discretizations for unknown current density and the 

free-space Green’s function. 
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The entries of G are the 3D block-Toeplitz matrix. Com-

bined with Eqs. (6) and (8),  
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where ,n ng   is the Lagrange coefficients of the free-space 

Green’s function. Interchanging summation and integration 

orders leads to 
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2. Representation of the Π Matrices 

There are two projection matrices needed in the IE-FFT. 

They are: 
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respectively. In contrast to Eq. (3),  ;g r r 
 

 only depends 

on the Lagrange polynomials, i.e.,  p
n r 


. The gradient of 

the 3D tensor product,  p
n r 

, is expressed in 
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The entries of PΠ


are 
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where  ,i x r 
,  ,i y r 

, and  ,i z r 
 are the vectors of the 

RWG basis function at the x-, y-, z-directions, respectively. 

Note that pΠ


is a vector-valued and sparse matrix. 
 

3. Near-Field Correction 

In Fig. 1, the near-field interaction terms within αλ should be 

appropriately corrected to guarantee the accuracy. The correc-

tion entries are given as: 
 

   Π G Π
Tcorr MoM

ij ij A IJ PiI Jj
Z Z 

 
,          (19) 

 

where 0 i N  , neigj L , and neigL comprise the set of the 

near-field interaction elements. 

 

4. Fast Matrix Vector Multiplication 
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The complexities of the corrZ  and Π  matrices concerning 

the memory requirements and the matrix fill-in time are 𝑂 𝑁 . 

With the help of the FFT, the complexity of the matrix-vector 

multiplication of the G matrix leads to 𝑂 𝑁 . log𝑁 . The 

memory requirement of the G matrix is 𝑂 𝑁 . . 

IV. NUMERICAL RESULTS 

To demonstrate the efficiency of the proposed algorithm, a 

PEC sphere with a radius of 1.0 m is considered. The geometry 

of the PEC sphere is shown in Fig. 2. The triangular meshes  
 

 
Fig. 2. The geometry of a PEC sphere. 

are built so that there are at least λ/7. All numerical experiments 

are carried out on a 2 GB RAM Intel Pentium M processor 

1.60 GHz. All computations have been performed in single 

precision arithmetic. Third-order Lagrange polynomials are 

used to interpolate the free-space Green’s function. 

The results of the IE-FFT algorithm with the MFIE formu-

lation are compared to those of the Mie series. Fig. 3 shows the 

results of the bistatic RCS at a frequency of 300 MHz. Three 

results of the Mie series, the conventional MoM, and the pro-

posed approach are compared. In Fig. 3(a), the results between 

the Mie series and the MoM approaches are seen to be slightly 

different around 180°. However, the results between the tradi-

tional MoM and the IE-FFT algorithm have very good agree-

ments on both the E-plane and the H-plane. Inaccuracy comes 

from the numerical integration in the hyper-singular part. The 

IE-FFT algorithm does not deteriorate the accuracy. The re-

sults of the bistatic RCS at a frequency of 600 MHz are shown 

in Fig. 4. The results from the Mie series and the IE-FFT algo-

rithm also have reasonable agreements on both the E-plane and 

the H-plane. The largest difference between the two results is 

obtained around 160°–180° from the effects of the numerical 

integration. Fig. 5 shows the results of bistatic RCS at a fre-

quency of 1,200 MHz. Both results are reasonable agreements. 

 

 
(a) 

 
(b) 

Fig. 3. The bistatic RCS for a 1-m PEC sphere at a frequency of 

300 MHz. (a) E-plane and (b) H-plane. 
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(a) 

 

(b) 

Fig. 4. The bistatic RCS for a one-meter PEC sphere at a frequen-

cy of 600 MHz. (a) E-plane and (b) H-plane. 

 

Table 1 summarizes the memory requirements of the IE-

FFT algorithm for third-order Lagrange polynomials. All units 

are Megabytes. The memory of the correction matrix, corrZ , 

and the Π  matrices shows 𝑂 𝑁  complexity. However, the 

coefficient of the free-space Green’s function is 𝑂 𝑁 .  com-

plexity. 

Table 2 summarizes the CPU time and the number of itera-

tions of the IE-FFT algorithm with third-order Lagrange poly-

nomials. The CPU time for the matrices fill-in has 𝑂 𝑁  

complexity. The CPU time for the matrix vector multiplication 

(MXV) is 𝑂 𝑁 . log𝑁  complexity. 

 
Table 1. Memory requirement of the IE-FFT algorithm for scat-

tering from a PEC sphere with a radius of 1 m 

Freq. (MHz) N corrZ  A PΠ + Π
 

 G

300 3,072 22 11 0.26

600 12,288 90 42 2.10

1,200 49,152 365 169 16.78

 

 
(a) 

 
(b) 

Fig. 5. The bistatic RCS for a one-meter PEC sphere at a frequen-

cy of 1,200 MHz. (a) E-plane and (b) H-plane. 

 

Table 2. The CPU time and the number of iterations of the IE-

FFT algorithm for scattering from a PEC sphere with a 

radius of 1 m 

Freq. 

(MHz)
N corrZ A PΠ + Π

 
 

MXV/

iteration

No. of 

iteration

300 3,072 130 4 0.26 19

600 12,288 540 17 2.10 79

1,200 49,152 2,105 19 16.78 96

 

The memory requirement versus the number of unknowns is 

given in Fig. 6(a) for third-order Lagrange polynomials. The 

memory requirements of the correction, Π  matrices, and the 

coefficients of the free-space Green’s function are plotted with 

circles, squares, and diamonds, respectively. The 𝑂 𝑁  and 

𝑂 𝑁 .  complexities are plotted as dashed and dotted lines for 

references, respectively. The CPU time for the matrix-fill-in 

and the matrix vector multiplication per iteration versus the 

number of unknowns are plotted in Fig. 6(b). As an iterative 

solver, a generalized minimal residual method (GMRES) [11] 

is used when the matrix vector products are performed. There is  
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(a) 

 
(b) 

Fig. 6. The numerical complexities versus the number of unknowns 

(p = 3) (a) Memory requirements. (b) The CPU time for 

the matrix-fill-in and matrix-vector products per iteration. 

 

no preconditioner. The tolerance of GMRES is 10-3. The 

dashed and dotted lines of the 𝑂 𝑁  and 𝑂 𝑁 . log𝑁  com-

plexities are plotted as references, respectively. The CPU time 

for assembling the correction Π  matrices is 𝑂 𝑁 complexity. 

The CPU time of MXV is approximately 𝑂 𝑁 . log𝑁 . 

The accuracy of the IE-FFT algorithm for the MFIE formu-

lation is addressed. The root mean square (RMS) error of the 

bistatic RCS is defined as 
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where   and   are the azimuth and elevation angles, 

 ,ARCS    is the RCS value of the conventional MoM, the 

IE-FFT algorithm [9], and other numerical methods. First, we 

calculate the RMS error of the conventional MoM, relative to 

the Mie series solution versus the sampling segments per wave-

length. The value of the error is the maximum error bound of 

the IE-FFT. For example, the RMS error of the bistatic RCS 

for a one-meter PEC sphere at a frequency of 600 MHz is  

 
Fig. 7. The RMS errors of the bistatic RCS calculations versus the 

sampling segments per wavelength (p = 2, 3). 

 

0.0108. Due to the hyper-singular integral of the MFIE formu-

lation, the RMS error is much larger than that of the EFIE. 

The RMS errors of the IE-FFT, relative to the Mie series sam-

pling segments per wavelength, are plotted in Fig. 7. The 

dashed line is the RMS error of the conventional MoM as a 

reference. The dash-dotted line with square markers and the 

solid line with circular markers represent the RMS error of the 

IE-FFT for the second- and third-order Lagrange polynomials, 

respectively. The RMS error of the second-order polynomials is 

converged with that of the conventional MoM with approxi-

mately 28 sampling segments. However, the RMS error of the 

third-order polynomials is converged with 19 elements. In this 

case, the RMS error for the MFIE is approximately 0.01. Some 

discrepancies are not the problem of the IE-FFT but that of the 

conventional MoM. The accuracy of the IE-FFT algorithm can 

be compared to that of the conventional MoM. 

V. CONCLUSION 

The IE-FFT algorithm with MFIE formulation achi-

eves  𝑂 𝑁 .  and  𝑂 𝑁 . log𝑁  complexities for required 

memory and CPU time, respectively. Also, it is shown that the 

proposed algorithm is highly efficient without the help of a pre-

conditioner. The IE-FFT algorithm with MFIE formulation 

provides a high convergence rate as well. For better accuracy, a 

new scheme of hyper-singular integration should be further 

considered. 
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