• 제목/요약/키워드: Gravitational-wave

검색결과 92건 처리시간 0.023초

Gravitational Wave Data Analysis Activities in Korea

  • Oh, Sang-Hoon
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.78.2-78.2
    • /
    • 2014
  • Many techniques for data analysis also based on gaussian noise assumption which is often valid in various situations. However, the sensitivity of gravitational wave searches are limited by their non-gaussian and non-stationary noise. We introduce various on-going efforts to overcome this limitation in Korean Gravitational Wave Group. First, artificial neural networks are applied to discriminate non-gaussian noise artefacts and gravitational-wave signals using auxiliary channels of a gravitational wave detector. Second, viability of applying Hilbert-Huang transform is investigated to deal with non-stationary data of gravitational wave detectors. We also report progress in acceleration of low-latency gravitational search using GPGPU.

  • PDF

Current Status of Gravitational Wave Research

  • Lee, Hyung Mok
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.77.1-77.1
    • /
    • 2014
  • Gravitational waves predicted by the general relativity almost 100 years ago have been implicated indirectly only by astrophysical observations such as the orbital evolution of binary pulsars. The advanced detectors of gravitational waves will become operational in a few years and they are expected to make direct detection of gravitational wave signal coming from merging of binaries composed of neutron stars or stellar mass black holes from external galaxies. Korean Gravitational Wave Group (KGWG) is contributing to the possible detection through the data analysis of LIGO and Virgo. We summarize the perspectives of the gravitational wave research and the impacts of the detection in the near future in astronomy and astrophysics.

  • PDF

격변 변광성 : 확률적 중력파동배경의 샘 (CATACLYSMIC VARIABLES : SOURCES OF STOCHASTIC GRAVITATIONAL WAVE BACKGROUND)

  • 송두종
    • 천문학논총
    • /
    • 제22권4호
    • /
    • pp.113-132
    • /
    • 2007
  • On the framework of stochastic gravitational wave background(SGWB) by compact binary systems, we studied the strain spectra of SGWB produced by cosmological cataclysmic variables(CV). For this we reviewed the empirical properties of CVs by using newly published CV catalogue and calculated the cosmological densities of CVs considering the galaxy luminosity function and cosmic stellar birth rate function. Assuming the secular evolution of CVs, we calculated the time scale of CV gravitational wave(GW) radiation and derived formulae for the strain spectra of SGWB by cosmological CVs.

Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection

  • Jung, Pil-Jong;Kim, Keun-Young;Oh, John J.;Oh, Sang Hoon;Son, Edwin J.;Kim, Young-Min
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1197-1210
    • /
    • 2018
  • Since the first detection of gravitational-wave (GW), GW150914, September 14th 2015, the multi-messenger astronomy added a new way of observing the Universe together with electromagnetic (EM) waves and neutrinos. After two years, GW together with its EM counterpart from binary neutron stars, GW170817 and GRB170817A, has been observed. The detection of GWs opened a new window of astronomy/astrophysics and will be an important messenger to understand the Universe. In this article, we briefly review the gravitational-wave and the astrophysical sources and introduce the basic principle of the laser interferometer as a gravitational-wave detector and its noise sources to understand how the gravitational-waves are detected in the laser interferometer. Finally, we summarize the search algorithms currently used in the gravitational-wave observatories and the detector characterization algorithms used to suppress noises and to monitor data quality in order to improve the reach of the astrophysical searches.

중력파 검출 - 새로운 천문학의 시대를 위하여 (Gravitational-wave detection - for the new age of astronomy)

  • 오정근
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.58.1-58.1
    • /
    • 2015
  • Gravitational-wave has been predicted by Einstein's general relativity in 1916, but its direct detection has failed to date despite of the persistent efforts in the last fifty years in the ground-based gravitational wave detectors. In the centennial year of the birth of general relativity, 'advanced LIGO', one of the most promising Earth-based gravitational wave detectors, plans to start commissioning for the successful discovery of gravitational waves. In addition, a pathfinder satellite of eLISA project, a space-based GW antenna by European Space Agency (ESA), will be launched in the mid of this year. In this talk, we review the current status of gravitational waves detection experiments and discuss its scientific impacts and the possibility of opening the new age of astronomy.

  • PDF

Gravitational Wave Search for GRBs

  • Kim, Kyungmin
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.79.1-79.1
    • /
    • 2014
  • GRBs are the most energetic and very frequent electromagnetic events among known astronomical phenomena in the universe. The progenitor of GRBs is believed as one of most promising sources of gravitational waves. Thus, detection of gravitational wave signals associated with GRBs will be a fascinating issue. In this presentation, we describe how we search gravitational waves related to GRBs by using LIGO and Virgo data.

  • PDF

Application of Artificial Neural Networks to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

  • Oh, Sang Hoon;Kim, Kyungmin;Harry, Ian W.;Hodge, Kari A.;Kim, Young-Min;Lee, Chang-Hwan;Lee, Hyun Kyu;Oh, John J.;Son, Edwin J.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We apply a machine learning algorithm, artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. We also evaluate the gravitational-wave data within a few seconds of the selected short gamma-ray bursts' event times using the trained networks and obtain the false alarm probability. We suggest that artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  • PDF

확률적 중력파동 배경에 의한 약한 중력렌즈 (WEAK GRAVITATIONAL LENSING BY STOCHASTIC GRAVITATIONAL WAVE BACKGROUND)

  • 송두종
    • 천문학논총
    • /
    • 제22권4호
    • /
    • pp.103-111
    • /
    • 2007
  • On the formulation frameworks of linearly perturbed spacetime and weak gravitational lensing(WGL) we studied the statistical properties of a bundle of light rays propagating through stochastic gravitational wave background(SGWB). For this we considered the SGWB as tensor perturbations of linearly perturbed Friedmann spacetime. Using the solution of null geodesic deviation equation(NGDE) we related the convergence, shear and rotation deformation spectra of WGL with the strain spectra of SGWB. Adopting the astrophysical and cosmological SGWB strain spectra which were already known we investigated the approximated spectral forms of convergence, shear and rotation of WGL.

중력파와 천문학 (GRAVITATIONAL WAVES AND ASTRONOMY)

  • 이형목;이창환;강궁원;오정근;김정리;오상훈
    • 천문학논총
    • /
    • 제26권2호
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

분산 컴퓨팅을 이용한 중력파 검출을 위한 데이터 분석 (ANALYSIS OF GRAVITATIONAL WAVE EXPERIMENTAL DATA WITH DISTRIBUTED COMPUTING)

  • 임수일;이형목;김진호;오상훈;이상민
    • 천문학논총
    • /
    • 제22권2호
    • /
    • pp.43-54
    • /
    • 2007
  • Many gravitational wave detectors are now being built or under operation throughout the world. In particular, LIGO has taken scientific data several times, although current sensitivity is not sufficient to detect the weak signals routinely. However, the sensitivities have been improving steadily over past years so that the real detection will take place in the near future. Data analysis is another important area in detecting the gravitational wave signal. We have carried out the basic research in order to implement data analysis software in Korea@home environment. We first studied the LIGO Science Collaboration Algorithm Library(LAL) software package, and extracted the module that can generate the virtual data of gravitational wave detector. Since burst sources such as merging binaries of neutron stars and black holes are likely to be detected first, we have concentrated on the simulation of such signals. This module can generate pure gravitational wave forms, noise suitable for LIGO, and combination of the signal and noise. In order to detect the gravitational signal embedded in the noisy data, we have written a simple program that employs 'matched filtering' method which is very effective in detecting the signal with known waveform. We found that this method works extremely well.