Browse > Article
http://dx.doi.org/10.3938/jkps.73.1197

Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection  

Jung, Pil-Jong (School of Physics and Chemistry, Gwangju Institute of Science and Technology)
Kim, Keun-Young (School of Physics and Chemistry, Gwangju Institute of Science and Technology)
Oh, John J. (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences)
Oh, Sang Hoon (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences)
Son, Edwin J. (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences)
Kim, Young-Min (School of Natural Science, Ulsan National Institute of Science and Technology)
Abstract
Since the first detection of gravitational-wave (GW), GW150914, September 14th 2015, the multi-messenger astronomy added a new way of observing the Universe together with electromagnetic (EM) waves and neutrinos. After two years, GW together with its EM counterpart from binary neutron stars, GW170817 and GRB170817A, has been observed. The detection of GWs opened a new window of astronomy/astrophysics and will be an important messenger to understand the Universe. In this article, we briefly review the gravitational-wave and the astrophysical sources and introduce the basic principle of the laser interferometer as a gravitational-wave detector and its noise sources to understand how the gravitational-waves are detected in the laser interferometer. Finally, we summarize the search algorithms currently used in the gravitational-wave observatories and the detector characterization algorithms used to suppress noises and to monitor data quality in order to improve the reach of the astrophysical searches.
Keywords
Gravitational-wave; Data analysis; Detector characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Biswas et al., Phys. Rev. D 88, 062003 (2013).   DOI
2 J. Powell et al., Class. Quantum Grav. 34, 034002 (2017).   DOI
3 M. Zevin et al., Class. Quantum Grav. 34, 064003 (2017).   DOI
4 F. Robinet, Omicron: An Algorithm to Detect and Characterize Transient Noise in Gravitational-Wave Detectors, https://tds.ego-gw.it/ql/?c=10651.
5 S. Chatterji et al., Class. Quantum Grav. 21, S1809 (2004).   DOI
6 J. McIver (for the LIGO Scientific Collaboration and the Virgo Collaboration), Class. Quantum Grav. 29, 124010 (2012).   DOI
7 P. Ajith, M. Hewitson, J. R. Smith, H. Grote, S. Hild and K. A. Strain, Phys. Rev. D 76, 042004 (2007).   DOI
8 J. Aasi et al. (LIGO Scientific Collaboration and VIRGO Collaboration), Class. Quantum Grav. 29, 155002 (2012).   DOI
9 N. Christensen (for the LIGO Scientific Collaboration and the Virgo Collaboration1), Class. Quantum Grav. 27, 194010 (2010).   DOI
10 T. Accadia et al., Class. Quantum Grav. 27, 194011 (2010).   DOI
11 A. Di Credico (for the LIGO Scientific Collaboration), Class. Quantum Grav. 22, S1051 (2005).   DOI
12 R. Essick et al., Class. Quantum Grav. 30, 155010 (2013).   DOI
13 K. Riles, Prog. Part. Nucl. Phys. 68, 1 (2013).   DOI
14 B. Abbott et al., Astrophys. J. Lett. 683, L45 (2008).   DOI
15 P. Goldreich and W. H. Julian, Pulsar Electrodynamics, The Astrophysical Journal, 157 (1969).
16 P. A. R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014).   DOI
17 K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38 090001 (2014).   DOI
18 P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014).   DOI
19 L. P. Grishchuk, Class. Quantum Grav. 10, 2449 (1993).   DOI
20 X. Siemens, V. Mandic and J. D. Creighton, Phys. Rev. Lett. 98, 111101 (2007).   DOI
21 J. M. Weisberg, D. J. Nice and J. H. Taylor, Astrophys. J. 722, 1030 (2010).   DOI
22 A. Abramovici et al., Science 256, 325 (1992).   DOI
23 R. Vogt, F. Raab, R. Drever, K. Thorne, R. Weiss, (LIGO-M930006-00-M) Proposal to the NSF for the initial LIGO (Includes Technical Supplement dated May 1993)
24 F. J. Raab, in Proceedings of the SPIE (2004), p. 11.
25 R. Adhikari, Gravitational radiation detection with laser interferometry, Technical Report LIGO-P1200121-v1 (2012).
26 J. Mizuno, PhD thesis, Comparison of optical configurations for laser-interferometric gravitational-wave detectors, Hannover University, 1995.
27 J. Aasi et al. [LIGO Scientific Collaboration], Class. Quant. Grav. 32, 074001 (2015) doi:10.1088/0264-9381/32/7/074001 [arXiv:1411.4547 [gr-qc]].   DOI
28 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 93, 122004 (2016).   DOI
29 T. B. Littenberg and N. J. Cornish., Phys. Rev. D 91, 084034 (2015).   DOI
30 S. Klimenko, S. Mohanty, M. Rakhmanov and G. Mit-selmakher, Phys. Rev. D 72, 122002 (2005).   DOI
31 V. Necula, S. Klimenko and G. Mitselmakher, J. Phys. Conf. Ser. 363, 012032 (2012). doi:10.1088/1742-6596/363/1/012032   DOI
32 S. Klimenko et al., Phys. Rev. D 93, 042004 (2016).   DOI
33 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 33, 134001 (2016).   DOI
34 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 35, 065010 (2018).   DOI
35 P. B. Covas et al., Phys. Rev. D 97, 082002 (2018).   DOI
36 C. Pancow et al., arxiv:1808.03619 [gr-qc]   DOI
37 J. C. Driggers et al. (The LIGO Scientific Collaboration Instrument Science Authors), arxiv:1806.00532 [astro-ph.IM]   DOI
38 J. Slutsky et al., Class. Quantum Grav. 27, 165023 (2010).   DOI
39 H. A. G. Gabbard, F. Robinet, Characterization of the Omicron Trigger Generator and Transient Analysis of aLIGO Data, IREU Final Report.
40 L. Blackburn, LIGO-T060221-00-Z (2007).
41 L. Blackburn et al., Class. Quantum Grav. 25, 184004 (2008).   DOI
42 J. C. Brown, J. Acoust. Soc. Am. 89, 425 (1991).   DOI
43 T. Isogai (for the LIGO Scientific Collaboration and the Virgo Collaboration)., Conf. Ser. 243 012005 (2010).   DOI
44 J. R. Smith et al., Class. Quantum Grav. 28, 235005 (2011).   DOI
45 D. A. Brown (for the LIGO Scientific Collaboration), Class. Quantum. Grav. 21, S797 (2004).   DOI
46 A. E. Villar, E. D. Black, R. DeSalvo, K. G. Lib-brecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe and I. Taurasi, Phys. Rev. D 81, 122001 (2010).   DOI
47 B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. D 94, 102001 (2016) doi:10.1103/PhysRevD.94.102001 [arXiv:1605.01785[gr-qc]].   DOI
48 J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 89, 102006 (2014).   DOI
49 B. P. Abbott et al. [KAGRA and LIGO Scientific and VIRGO Collaborations], Living Rev. Rel. 21, 3 (2018) [Living Rev. Rel. 19, 1 (2016)] doi:10.1007/s41114-018-0012-9, 10.1007/lrr-2016-1 [arXiv:1304.0670 [gr-qc]].
50 B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Astrophys. J. 833, L1 (2016) [arXiv:1602.03842 [astro-ph.HE]].   DOI
51 T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einsteins Equations on the Computer (Cambridge University Press, 2010).
52 A.C. Phillips. The Physics of Stars, chapter 6.2 Collapse of a stellar core (John Wiley and Sons Ltd, 1999).
53 B. Sathyaprakash and B. F. Schutz. Living Rev. Rel. 12, 2 (2009).   DOI
54 E. Thrane et al., Phys. Rev. D 83, 083004 (2011).   DOI
55 J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans and D. Sigg, Phys. Rev. D 91, 062005 (2015) doi:10.1103/PhysRevD.91.062005 [arXiv:1410.5882 [gr-qc]].   DOI
56 J. Aasi et al. (The LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015).   DOI
57 F. Acernese et al. [VIRGO Collaboration], Class. Quant. Grav. 32, 024001 (2015) doi:10.1088/0264-9381/32/2/024001 [arXiv:1408.3978 [gr-qc]].   DOI
58 B. P. Abbott et al., Phys. Rev. D 93, 112004 (2016) Addendum: [Phys. Rev. D 97, 059901 (2018)] doi:10.1103/PhysRevD.93.112004, 10.1103/PhysRevD.97.059901 [arXiv:1604.00439 [astro-ph.IM]].
59 LIGO Scientific Collaboration, Instrument Sci-ence White Paper-url: https://dcc.ligo.org/LIGOT1400316/public (2016).
60 B. P. Abbott et al. [LIGO Scientific Collabo-ration], Class. Quant. Grav. 34, 044001 (2017) doi:10.1088/1361-6382/aa51f4 [arXiv:1607.08697 [astro-ph.IM]].   DOI
61 R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975).   DOI
62 M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010) doi:10.1088/0264-9381/27/19/194002.   DOI
63 K. Yamamoto, Study of the thermal noise caused by in-homogeneously distributed loss, Ph.D. thesis, U Tokyo, 2000.
64 J. Agresti, G. Castaldi, R. DeSalvo, V. Galdi, V. Pierro and I. Pinto, in SPIE Proceedings, Advances in Thin-Film Coatings for Optical Applications III (2006), Vol. 6286
65 J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 85, 082002 (2012).   DOI
66 B. P. Abbott et al. (LIGO Scientific Collaboration), Phys. Rev. D 80, 102001 (2009).   DOI
67 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 94, 069903 (2016).
68 B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Astrophys. J. 850, L39 (2017) doi:10.3847/2041-8213/aa9478 [arXiv:1710.05836 [astro-ph.HE]].   DOI
69 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).   DOI
70 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).   DOI
71 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL), Astrophys. J. Lett. 848, L12 (2017).   DOI
72 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL), Astrophys. J. Lett. 848, L13 (2017).   DOI
73 Coulter, D. A. et al., Science, 358, 1556 (2017).   DOI
74 A. H. Nitz, T. Dal Canton, D. Davis and S. Reyes, arXiv:1805.11174[gr-qc].   DOI
75 R. Lynch, S. Vitale, R. Essick, E. Katsavounidis and F. Robinet, Phys. Rev. D 95, 104046.
76 T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014) doi:10.1103/PhysRevD.90.082004 [arXiv:1405.6731 [gr-qc]].   DOI
77 S. A. Usman et al., Class. Quant. Grav. 33, 215004 (2016) doi:10.1088/0264-9381/33/21/215004 [arXiv:1508.02357 [gr-qc]].   DOI
78 K. Cannon et al., Astrophys. J. 748, 136 (2012) doi:10.1088/0004-637X/748/2/136 [arXiv:1107.2665[astro-ph.IM]].   DOI
79 S. Privitera et al., Phys. Rev. D 89, 024003 (2014) doi:10.1103/PhysRevD.89.024003 [arXiv:1310.5633 [gr-qc]].   DOI
80 C. Messick et al., Phys. Rev. D 95, 042001 (2017) doi:10.1103/PhysRevD.95.042001 [arXiv:1604.04324[astro-ph.IM]].   DOI
81 J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 88, 062001 (2013).   DOI
82 S. Mohapatra et al., Phys. Rev. D 90, 022001 (2014).   DOI
83 M. van der Sluys, V. Raymond, I. Mandel, C. Rover, N. Christensen, V. Kalogera, R. Meyer and A. Vecchio, Classical Quantum Gravity 25, 184011 (2008).   DOI
84 M. V. vanv, C. Rover, A. Stroeer, V. Raymond, I. Mandel, N. Christensen, V. Kalogera, R. Meyer and A. Vecchio, Astrophys. J. 688, L61 (2008).   DOI
85 J. Veitch and A. Vecchio, Phys. Rev. D 81, 062003 (2010).   DOI
86 S. Klimenko et al., Class. Quantum Grav. 25, 114029 (2008).   DOI
87 N. J. Cornish and T. B. Littenberg, Class. Quantum Grav. 32, 135012 (2015).   DOI
88 H Grote (for the LIGO Scientific Collaboration), Class. Quantum Grav. 27, 084003, (2010).   DOI
89 J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 32, 074001 (2015).   DOI
90 F. Acernese et al. (Virgo Collaboration), Class. Quantum Grav. 32, 024001 (2015).   DOI
91 K. Kuroda, Class. Quantum Grav. 27, 084004 (2010).   DOI
92 A. Einstein, The foundation of the General Relativity (Annalen der Physik, 1916).
93 C. W. Misner and K. S. Thorne, Gravitation (Princeton University Press, 2017).
94 S. Carroll, Spacetime And Geometry: An Introduction To General Relativity, 1st edition (Pearson India, 2003).
95 J. D. E. Freighton and W. G. anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theroy, Experiment and Data Analysis (Weinheim, Germany: Willey-VCH, 2011).
96 K. Riles, Prog. Part. Nucl. Phys. 68, 1 (2013).   DOI
97 M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, 1 edition (Oxford University Press, 2007).
98 A. Einstein, On gravitational waves (Preussische Akademie der Wissenschaften, 1918).
99 I. Chakrabarty, Gravitational Waves: an introduction arxiv:physics/9908041 (1999).
100 K. A. Postnov and L. R. Yungelson, Living Rev. Rel. 9, 6 (2006).   DOI
101 J. A. Faber and F. A. Rasio, Living Rev. Rel. 15, 8 (2012).   DOI
102 L. K. Nuttall, Phil. Trans. R. Soc. A 376, 20170286 (2018).   DOI
103 L. K. Nuttall et al., Class. Quantum Grav. 32, 245005 (2015).   DOI
104 M. Walker et al., Rev. Sci. Instrum. 88, 124501 (2017).   DOI
105 B. K. Berger (for the LIGO Scientific Collaboration), Conf. Series 957, 012004 (2018).   DOI