Browse > Article
http://dx.doi.org/10.5303/PKAS.2011.26.2.071

GRAVITATIONAL WAVES AND ASTRONOMY  

Lee, Hyung-Mok (Department of Physics and Astronomy, Seoul National University)
Lee, Chang-Hwan (Department of Physics, Pusan National University)
Kang, Gung-Won (Korea Institute for Science and Technology Information)
Oh, John-J. (National Institute for Mathematical Sciences, KT Daeduck Research Center)
Kim, Chung-Lee (Department of Physics, West Virginia University)
Oh, Sang-Hoon (National Institute for Mathematical Sciences, KT Daeduck Research Center)
Publication Information
Publications of The Korean Astronomical Society / v.26, no.2, 2011 , pp. 71-87 More about this Journal
Abstract
Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.
Keywords
gravitation; gravitational waves; relativity; black hole physics; instrumentation, interferometers; stars, neutron; stars, binaries; pulsars, general; supernovae, general;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ott, C. D., 2009, Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, Class. Quant. Grav., 26, 204015   DOI   ScienceOn
2 Phinney, S., et al., 2003, NASA Mission Concept Study
3 Pirani, A. E. F., 1956, Acta Phys. Polon., 15, 389
4 Pitkin, M., et al., 2011, Gravitational Wave Detection by Interferometry (Ground and Space), arXiv:1102.3355
5 Pretorius, F., 2005, Evolution of Binary Black-Hole Spacetimes, Phys. Rev. Lett., 95, 121101   DOI   ScienceOn
6 Pretorius, F., 2007, Binary Black Hole Coalescence, arXiv:0710.1338
7 Punturo, M., et al., 2010, The Einstein Telescope: a Third-Generation Gravitational Wave Observatory, Class. Quant. Grav., 27, 194002   DOI   ScienceOn
8 Radhakrishnan, V. & Manchester, R. N., 1969, Detection of a Change of State in the Pulsar PSR 0833-45, Nature, 222, 228   DOI
9 Ruderman, M., 1969, Neutron Starquakes and Pulsar Periods, Nature, 223, 597
10 Waldman, S. J, 2011, The Advanced LIGO Gravitational Wave Detector, arXiv:1103.2728
11 Weber, J., 1960, Detection and Generation of Gravitational Waves, Phys. Rev., 117, 306   DOI
12 Weiss, R., 1973, Quarterly Reports of the Research Laboratory of Electronics MIT, 105, 54
13 Weisberg, J. M., Nice, D. J., & Taylor, J. H., 2010, Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16, ApJ, 722, 1030   DOI
14 Detweiler, S., 1979, Pulsar Timing Measurements and the Search for Gravitational Waves, ApJ, 234, 1100   DOI
15 Hahn, S. G. & Lindquist, R. W., 1964, The Two-Body Problem in Geometrodynamics, Ann. Phys., 29, 304   DOI   ScienceOn
16 Harry, G. M., 2010, Advanced LIGO: the Next Generation of Gravitational Wave Detectors, Class. Quant. Grav., 27, 084006   DOI   ScienceOn
17 Hobbs, G., et al., 2010, The International Pulsar Timing Array Project: Using Pulsars as a Gravitational Wave Detector, Class. Quant. Grav., 27, 084013   DOI   ScienceOn
18 Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., & Kiuchi, K., 2011, Binary Neutron Star Mergers: Dependence on the Nuclear Equation of State, Phys. Rev. D, 83, 124008   DOI
19 Hulse, R. & Taylor, J., 1975, Discovery of a Pulsar in a Binary System, ApJ, 195, L51   DOI
20 Kawamura, S., et al., 2011, The Japanese Space Gravitational Wave Antenna: DECIGO, Class. Quant. Grav., 28, 094011   DOI   ScienceOn
21 Kim, C., Kalogera, V., & Lorimer, D. R., 2010, The Effect of PSR J0737-3039 on the DNS Merger Rate and Implications for Gravity-Wave Detection, New Astronomy Reviews, 54, 148   DOI   ScienceOn
22 Kim, J., et al., 2011, in preparation
23 Kuroda, K., 2010, Status of LCGT, Class. Quant. Grav., 27, 084004   DOI   ScienceOn
24 Lattimer, J. & Prakash, M., 2007, Neutron Star Observations: Prognosis for Equation of State Constraints, Phys. Rep., 442, 109   DOI   ScienceOn
25 O'Shaughnessy, R. & Kim, C., 2010, Pulsar Binary Birthrates with Spin-Opening Angle Correlations, ApJ, 715, 230   DOI
26 Ajith, P., et al., 2008, A Template Bank for Gravitational Waveforms from Coalescing Binary Black Holes: Non-Spinning Binaries, Phys. Rev. D, 77, 104017 [Erratum-ibid. D, 79, 129901 (2009)]   DOI
27 Anderson, P. W. & Itoh, N., 1975, Pulsar Glitches and Restlessness as a Hard Superfluidity Phenomenon, Nature, 256, 25   DOI
28 Antonucci, F., et al., 2011, LISA Pathfinder: Mission and Status, Class. Quant. Grav., 28, 094001   DOI   ScienceOn
29 Baker, J. G., Centrella, J., Choi, D. -I., Koppitz, M., & van Meter, J., 2006, Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes, Phys. Rev. Lett., 96, 111102   DOI   ScienceOn
30 Baker, J. G., McWilliams, S. T., van Meter, J. R., Centrella, J., Choi, D. -I., Kelly, B. J., & Koppitz, M., 2007, Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations, Phys. Rev. D, 75, 124024   DOI
31 Bradaschia, C., et al., 1992, Virgo: Very Wide Band Interferometric Gravitational Wave Antenna, Nuclear Physics B Proceedings Supplements, 28, 54   DOI   ScienceOn
32 Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T., 2010, A Two-Solar-Mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081   DOI   ScienceOn
33 Campanelli, M., Lousto, C. O., Marronetti, P., & Zlochower, Y., 2006, Accurate Evolutions of Orbiting Black Hole Binaries Without Excision, Phys. Rev. Lett., 96, 111101   DOI   ScienceOn
34 Cutler, C. & Thorne, K. S., 2002, An Overview of Gravitational-Wave Sources, Proceedings of GR16 (Durban, South Africa 2001), arXiv: gr-qc/0204909
35 Danzmann, K. & the LISA study team, 1996, LISA Pre-phase A report , MPQ209
36 Abramovici, A., et al., 1992, LIGO - The Laser Interferometer Gravitational-Wave Observatory, Science, 256, 325   DOI   ScienceOn
37 Abadie, J., et al., 2010, Predictions for the Rates of Compact Binary Coalescences Observable by Ground-Based Gravitational-Wave Detectors, Class. Quant. Grav., 27, 173001   DOI   ScienceOn
38 Abbott, B., et al., 2005, Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data, Phys. Rev. Lett., 94, 81103