DOI QR코드

DOI QR Code

Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection

  • Jung, Pil-Jong (School of Physics and Chemistry, Gwangju Institute of Science and Technology) ;
  • Kim, Keun-Young (School of Physics and Chemistry, Gwangju Institute of Science and Technology) ;
  • Oh, John J. (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Oh, Sang Hoon (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Son, Edwin J. (Division of Basic Researches for Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Kim, Young-Min (School of Natural Science, Ulsan National Institute of Science and Technology)
  • Received : 2018.06.05
  • Published : 2018.11.15

Abstract

Since the first detection of gravitational-wave (GW), GW150914, September 14th 2015, the multi-messenger astronomy added a new way of observing the Universe together with electromagnetic (EM) waves and neutrinos. After two years, GW together with its EM counterpart from binary neutron stars, GW170817 and GRB170817A, has been observed. The detection of GWs opened a new window of astronomy/astrophysics and will be an important messenger to understand the Universe. In this article, we briefly review the gravitational-wave and the astrophysical sources and introduce the basic principle of the laser interferometer as a gravitational-wave detector and its noise sources to understand how the gravitational-waves are detected in the laser interferometer. Finally, we summarize the search algorithms currently used in the gravitational-wave observatories and the detector characterization algorithms used to suppress noises and to monitor data quality in order to improve the reach of the astrophysical searches.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102
  2. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101
  3. B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Astrophys. J. 850, L39 (2017) doi:10.3847/2041-8213/aa9478 [arXiv:1710.05836 [astro-ph.HE]].
  4. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL), Astrophys. J. Lett. 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9
  5. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL), Astrophys. J. Lett. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c
  6. Coulter, D. A. et al., Science, 358, 1556 (2017). https://doi.org/10.1126/science.aap9811
  7. J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001
  8. F. Acernese et al. (Virgo Collaboration), Class. Quantum Grav. 32, 024001 (2015). https://doi.org/10.1088/0264-9381/32/2/024001
  9. H Grote (for the LIGO Scientific Collaboration), Class. Quantum Grav. 27, 084003, (2010). https://doi.org/10.1088/0264-9381/27/8/084003
  10. K. Kuroda, Class. Quantum Grav. 27, 084004 (2010). https://doi.org/10.1088/0264-9381/27/8/084004
  11. A. Einstein, The foundation of the General Relativity (Annalen der Physik, 1916).
  12. C. W. Misner and K. S. Thorne, Gravitation (Princeton University Press, 2017).
  13. S. Carroll, Spacetime And Geometry: An Introduction To General Relativity, 1st edition (Pearson India, 2003).
  14. J. D. E. Freighton and W. G. anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theroy, Experiment and Data Analysis (Weinheim, Germany: Willey-VCH, 2011).
  15. K. Riles, Prog. Part. Nucl. Phys. 68, 1 (2013). https://doi.org/10.1016/j.ppnp.2012.08.001
  16. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, 1 edition (Oxford University Press, 2007).
  17. A. Einstein, On gravitational waves (Preussische Akademie der Wissenschaften, 1918).
  18. I. Chakrabarty, Gravitational Waves: an introduction arxiv:physics/9908041 (1999).
  19. K. A. Postnov and L. R. Yungelson, Living Rev. Rel. 9, 6 (2006). https://doi.org/10.12942/lrr-2006-6
  20. J. A. Faber and F. A. Rasio, Living Rev. Rel. 15, 8 (2012). https://doi.org/10.12942/lrr-2012-8
  21. J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 89, 102006 (2014). https://doi.org/10.1103/PhysRevD.89.102006
  22. B. P. Abbott et al. [KAGRA and LIGO Scientific and VIRGO Collaborations], Living Rev. Rel. 21, 3 (2018) [Living Rev. Rel. 19, 1 (2016)] doi:10.1007/s41114-018-0012-9, 10.1007/lrr-2016-1 [arXiv:1304.0670 [gr-qc]].
  23. B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Astrophys. J. 833, L1 (2016) [arXiv:1602.03842 [astro-ph.HE]]. https://doi.org/10.3847/2041-8205/833/1/L1
  24. B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. D 94, 102001 (2016) doi:10.1103/PhysRevD.94.102001 [arXiv:1605.01785[gr-qc]].
  25. T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einsteins Equations on the Computer (Cambridge University Press, 2010).
  26. A.C. Phillips. The Physics of Stars, chapter 6.2 Collapse of a stellar core (John Wiley and Sons Ltd, 1999).
  27. B. Sathyaprakash and B. F. Schutz. Living Rev. Rel. 12, 2 (2009). https://doi.org/10.12942/lrr-2009-2
  28. E. Thrane et al., Phys. Rev. D 83, 083004 (2011). https://doi.org/10.1103/PhysRevD.83.083004
  29. K. Riles, Prog. Part. Nucl. Phys. 68, 1 (2013). https://doi.org/10.1016/j.ppnp.2012.08.001
  30. B. Abbott et al., Astrophys. J. Lett. 683, L45 (2008). https://doi.org/10.1086/591526
  31. P. Goldreich and W. H. Julian, Pulsar Electrodynamics, The Astrophysical Journal, 157 (1969).
  32. P. A. R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014). https://doi.org/10.1103/PhysRevLett.112.241101
  33. K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001
  34. P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591
  35. L. P. Grishchuk, Class. Quantum Grav. 10, 2449 (1993). https://doi.org/10.1088/0264-9381/10/12/006
  36. X. Siemens, V. Mandic and J. D. Creighton, Phys. Rev. Lett. 98, 111101 (2007). https://doi.org/10.1103/PhysRevLett.98.111101
  37. R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975). https://doi.org/10.1086/181708
  38. J. M. Weisberg, D. J. Nice and J. H. Taylor, Astrophys. J. 722, 1030 (2010). https://doi.org/10.1088/0004-637X/722/2/1030
  39. A. Abramovici et al., Science 256, 325 (1992). https://doi.org/10.1126/science.256.5055.325
  40. R. Vogt, F. Raab, R. Drever, K. Thorne, R. Weiss, (LIGO-M930006-00-M) Proposal to the NSF for the initial LIGO (Includes Technical Supplement dated May 1993)
  41. F. J. Raab, in Proceedings of the SPIE (2004), p. 11.
  42. R. Adhikari, Gravitational radiation detection with laser interferometry, Technical Report LIGO-P1200121-v1 (2012).
  43. J. Mizuno, PhD thesis, Comparison of optical configurations for laser-interferometric gravitational-wave detectors, Hannover University, 1995.
  44. J. Aasi et al. [LIGO Scientific Collaboration], Class. Quant. Grav. 32, 074001 (2015) doi:10.1088/0264-9381/32/7/074001 [arXiv:1411.4547 [gr-qc]].
  45. J. Aasi et al. (The LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001
  46. F. Acernese et al. [VIRGO Collaboration], Class. Quant. Grav. 32, 024001 (2015) doi:10.1088/0264-9381/32/2/024001 [arXiv:1408.3978 [gr-qc]].
  47. B. P. Abbott et al., Phys. Rev. D 93, 112004 (2016) Addendum: [Phys. Rev. D 97, 059901 (2018)] doi:10.1103/PhysRevD.93.112004, 10.1103/PhysRevD.97.059901 [arXiv:1604.00439 [astro-ph.IM]].
  48. J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans and D. Sigg, Phys. Rev. D 91, 062005 (2015) doi:10.1103/PhysRevD.91.062005 [arXiv:1410.5882 [gr-qc]].
  49. LIGO Scientific Collaboration, Instrument Sci-ence White Paper-url: https://dcc.ligo.org/LIGOT1400316/public (2016).
  50. B. P. Abbott et al. [LIGO Scientific Collabo-ration], Class. Quant. Grav. 34, 044001 (2017) doi:10.1088/1361-6382/aa51f4 [arXiv:1607.08697 [astro-ph.IM]].
  51. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010) doi:10.1088/0264-9381/27/19/194002.
  52. K. Yamamoto, Study of the thermal noise caused by in-homogeneously distributed loss, Ph.D. thesis, U Tokyo, 2000.
  53. J. Agresti, G. Castaldi, R. DeSalvo, V. Galdi, V. Pierro and I. Pinto, in SPIE Proceedings, Advances in Thin-Film Coatings for Optical Applications III (2006), Vol. 6286
  54. A. E. Villar, E. D. Black, R. DeSalvo, K. G. Lib-brecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe and I. Taurasi, Phys. Rev. D 81, 122001 (2010). https://doi.org/10.1103/PhysRevD.81.122001
  55. J. Abadie et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 85, 082002 (2012). https://doi.org/10.1103/PhysRevD.85.082002
  56. B. P. Abbott et al. (LIGO Scientific Collaboration), Phys. Rev. D 80, 102001 (2009). https://doi.org/10.1103/PhysRevD.80.102001
  57. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 94, 069903 (2016).
  58. R. Lynch, S. Vitale, R. Essick, E. Katsavounidis and F. Robinet, Phys. Rev. D 95, 104046.
  59. T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014) doi:10.1103/PhysRevD.90.082004 [arXiv:1405.6731 [gr-qc]].
  60. S. A. Usman et al., Class. Quant. Grav. 33, 215004 (2016) doi:10.1088/0264-9381/33/21/215004 [arXiv:1508.02357 [gr-qc]].
  61. A. H. Nitz, T. Dal Canton, D. Davis and S. Reyes, arXiv:1805.11174[gr-qc]. https://doi.org/10.1103/PhysRevD.98.024050
  62. K. Cannon et al., Astrophys. J. 748, 136 (2012) doi:10.1088/0004-637X/748/2/136 [arXiv:1107.2665[astro-ph.IM]].
  63. S. Privitera et al., Phys. Rev. D 89, 024003 (2014) doi:10.1103/PhysRevD.89.024003 [arXiv:1310.5633 [gr-qc]].
  64. C. Messick et al., Phys. Rev. D 95, 042001 (2017) doi:10.1103/PhysRevD.95.042001 [arXiv:1604.04324[astro-ph.IM]].
  65. J. Aasi et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 88, 062001 (2013). https://doi.org/10.1103/PhysRevD.88.062001
  66. S. Mohapatra et al., Phys. Rev. D 90, 022001 (2014). https://doi.org/10.1103/PhysRevD.90.022001
  67. M. van der Sluys, V. Raymond, I. Mandel, C. Rover, N. Christensen, V. Kalogera, R. Meyer and A. Vecchio, Classical Quantum Gravity 25, 184011 (2008). https://doi.org/10.1088/0264-9381/25/18/184011
  68. M. V. vanv, C. Rover, A. Stroeer, V. Raymond, I. Mandel, N. Christensen, V. Kalogera, R. Meyer and A. Vecchio, Astrophys. J. 688, L61 (2008). https://doi.org/10.1086/595279
  69. J. Veitch and A. Vecchio, Phys. Rev. D 81, 062003 (2010). https://doi.org/10.1103/PhysRevD.81.062003
  70. S. Klimenko et al., Class. Quantum Grav. 25, 114029 (2008). https://doi.org/10.1088/0264-9381/25/11/114029
  71. N. J. Cornish and T. B. Littenberg, Class. Quantum Grav. 32, 135012 (2015). https://doi.org/10.1088/0264-9381/32/13/135012
  72. T. B. Littenberg and N. J. Cornish., Phys. Rev. D 91, 084034 (2015). https://doi.org/10.1103/PhysRevD.91.084034
  73. S. Klimenko, S. Mohanty, M. Rakhmanov and G. Mit-selmakher, Phys. Rev. D 72, 122002 (2005). https://doi.org/10.1103/PhysRevD.72.122002
  74. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. D 93, 122004 (2016). https://doi.org/10.1103/PhysRevD.93.122004
  75. V. Necula, S. Klimenko and G. Mitselmakher, J. Phys. Conf. Ser. 363, 012032 (2012). doi:10.1088/1742-6596/363/1/012032
  76. S. Klimenko et al., Phys. Rev. D 93, 042004 (2016). https://doi.org/10.1103/PhysRevD.93.042004
  77. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 33, 134001 (2016). https://doi.org/10.1088/0264-9381/33/13/134001
  78. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Class. Quantum Grav. 35, 065010 (2018). https://doi.org/10.1088/1361-6382/aaaafa
  79. P. B. Covas et al., Phys. Rev. D 97, 082002 (2018). https://doi.org/10.1103/PhysRevD.97.082002
  80. C. Pancow et al., arxiv:1808.03619 [gr-qc] https://doi.org/10.1103/PhysRevD.98.084016
  81. J. C. Driggers et al. (The LIGO Scientific Collaboration Instrument Science Authors), arxiv:1806.00532 [astro-ph.IM] https://doi.org/10.1103/PhysRevD.99.042001
  82. J. McIver (for the LIGO Scientific Collaboration and the Virgo Collaboration), Class. Quantum Grav. 29, 124010 (2012). https://doi.org/10.1088/0264-9381/29/12/124010
  83. L. K. Nuttall et al., Class. Quantum Grav. 32, 245005 (2015). https://doi.org/10.1088/0264-9381/32/24/245005
  84. M. Walker et al., Rev. Sci. Instrum. 88, 124501 (2017). https://doi.org/10.1063/1.5000264
  85. B. K. Berger (for the LIGO Scientific Collaboration), Conf. Series 957, 012004 (2018). https://doi.org/10.1088/1742-6596/957/1/012004
  86. L. K. Nuttall, Phil. Trans. R. Soc. A 376, 20170286 (2018). https://doi.org/10.1098/rsta.2017.0286
  87. R. Biswas et al., Phys. Rev. D 88, 062003 (2013). https://doi.org/10.1103/PhysRevD.88.062003
  88. J. Powell et al., Class. Quantum Grav. 34, 034002 (2017). https://doi.org/10.1088/1361-6382/34/3/034002
  89. M. Zevin et al., Class. Quantum Grav. 34, 064003 (2017). https://doi.org/10.1088/1361-6382/aa5cea
  90. F. Robinet, Omicron: An Algorithm to Detect and Characterize Transient Noise in Gravitational-Wave Detectors, https://tds.ego-gw.it/ql/?c=10651.
  91. S. Chatterji et al., Class. Quantum Grav. 21, S1809 (2004). https://doi.org/10.1088/0264-9381/21/20/024
  92. P. Ajith, M. Hewitson, J. R. Smith, H. Grote, S. Hild and K. A. Strain, Phys. Rev. D 76, 042004 (2007). https://doi.org/10.1103/PhysRevD.76.042004
  93. J. Aasi et al. (LIGO Scientific Collaboration and VIRGO Collaboration), Class. Quantum Grav. 29, 155002 (2012). https://doi.org/10.1088/0264-9381/29/15/155002
  94. N. Christensen (for the LIGO Scientific Collaboration and the Virgo Collaboration1), Class. Quantum Grav. 27, 194010 (2010). https://doi.org/10.1088/0264-9381/27/19/194010
  95. T. Accadia et al., Class. Quantum Grav. 27, 194011 (2010). https://doi.org/10.1088/0264-9381/27/19/194011
  96. A. Di Credico (for the LIGO Scientific Collaboration), Class. Quantum Grav. 22, S1051 (2005). https://doi.org/10.1088/0264-9381/22/18/S19
  97. R. Essick et al., Class. Quantum Grav. 30, 155010 (2013). https://doi.org/10.1088/0264-9381/30/15/155010
  98. H. A. G. Gabbard, F. Robinet, Characterization of the Omicron Trigger Generator and Transient Analysis of aLIGO Data, IREU Final Report.
  99. L. Blackburn, LIGO-T060221-00-Z (2007).
  100. J. Slutsky et al., Class. Quantum Grav. 27, 165023 (2010). https://doi.org/10.1088/0264-9381/27/16/165023
  101. L. Blackburn et al., Class. Quantum Grav. 25, 184004 (2008). https://doi.org/10.1088/0264-9381/25/18/184004
  102. J. C. Brown, J. Acoust. Soc. Am. 89, 425 (1991). https://doi.org/10.1121/1.400476
  103. T. Isogai (for the LIGO Scientific Collaboration and the Virgo Collaboration)., Conf. Ser. 243 012005 (2010). https://doi.org/10.1088/1742-6596/243/1/012005
  104. J. R. Smith et al., Class. Quantum Grav. 28, 235005 (2011). https://doi.org/10.1088/0264-9381/28/23/235005
  105. D. A. Brown (for the LIGO Scientific Collaboration), Class. Quantum. Grav. 21, S797 (2004). https://doi.org/10.1088/0264-9381/21/5/060