• 제목/요약/키워드: Grain sizes

검색결과 446건 처리시간 0.032초

DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 수퍼하드 TiN 코팅막의 물성 비교연구 (A Comparative Study of Superhard TiN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering)

  • 전성용
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.55-60
    • /
    • 2013
  • Superhard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 300 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain sizes of TiN coatings were decreased from 12.6 nm to 8.7 nm with increase of ICP power. The maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at ICP power of 300 W. Preferred orientation in TiN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

질화규소의 기계적 성질 및 접촉 손상 : II. 미세구조의 영향 (Mechanical Properties and Contact Damage of Silicon Nitrides Nitrides : II. Effect of Microstructure)

  • 이승건
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.22-27
    • /
    • 1998
  • The effect of the $\alpha$/$\beta$ phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of $\alpha$/$\beta$ phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.

  • PDF

변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향 (Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates)

  • 이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.535-541
    • /
    • 2016
  • The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.

화순천의 퇴적환경 및 퇴적물과 하천수의 지구화학적 특성 (Sedimentary Environments, Geochemical Characteristics of Sediments and River waters, Hwasun-cheon)

  • 오강호;고영구;김주용;김해경
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.881-895
    • /
    • 2002
  • Sediments and river waters form the channel of Hwasun-cheon were studied in sedimentological size and geochemical analyses of metallic elements for the purposes of identification of depositional environments and geochemical characteristics. The sizes of sediments are assigned to pebble to coarse sand in mean size and polymodal in distribution. And the sediments are poorly to very poorly sorted and positively skewed. According to the grain size distributions of the sediments, the Hwasun-cheon belongs to gravel-bed river on the basis of the grain size distribution of the sediments. The behaviors of metallic elements in the sediments mainly depend on not grain size distribution but the geology connected with geomorphological reliefs near the stream. Contamination indices(CI) of Zn, Cu and Pb are 2.83 to 6.96 with average 4.31 in the sediments. Hwasun-cheon is assigned to general stream type in accordance with water quality of physical factors and chemical characteristics by Piper's diagram. Though meaningful values of BOD, T-N, T-P were locally depicted near Masan-ri, Hwasun-eup and Jiseok-cheon areas, artificial metal concentration do not represent in the most area of the stream. Sediments and river water are considered that the relatively more or less high metallic contents in the stream are originated from coal mine and urban area.

Hot Wire CVD를 이용한 다결정 Si 박막의 고속 저온 증착 (Fast and Low Temperature Deposition of Polycrystalline Silicon Films by Hot Wire CVD)

  • 이정철;강기환;김석기;윤경훈;송진수;박이준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1427-1429
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-Wire CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the wire temperature($T_w$). The films deposited at high $T_w$ of 2000$^{\circ}C$ have superior crystalline properties; average lateral grain sizes are larger than $1{\mu}m$ and there at·e no vertical grain boundaries. The surface of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and textured surface are believed to give high current density when applied to solar cells. However, the poly-si films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해서 II. Bridging 효과를 고려한 Double cantilever Beam 분석방법의 정립 (Analysis of Bridging Stress Effect of Polycrystalline Aluminas Using Double Cantilever Beam Method II. Development of Double Cantilever Beam Method Considering Bridging Effect)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.590-601
    • /
    • 1996
  • This study aims at developing the double cantilever beam (DCB) method in order to calculate the bridging stress distribution in polycrystalline aluminas with different grain sizes. In the already existing DCB methods the measured crack opening displacement (COD) in coarse-grained aluminas deviates generally from the calcula-ted one because of the grain-interface bridging in the crack wake. In the current DBC method developed in the present study the effect of the bridging stress was considered in the DCB analysis. whereas the only effect of applied point-loading at the end of DCB specimen was taken into account in the existing DCB analysis The crack closure due to bridging stress was calculated using the power-law relation and the theoretical model developed in Part I of the present paper as bridging stress function and then compared analytically. The limitations of the current DCB methods such as specimen dimensions applied loads and elastic modulus were discussed in detail to provide a reliability of the newly developed DCB analysis for the bridging stress distribu-tion in polycrystalline aluminas.

  • PDF

$Si_3N_4$계 세라믹 절삭공구의 절삭성능평가 및 회귀분석에 의한 공구수명 추정 (Cutting Performance Evaluation and Estimation of Tool Life by Simple & Multiple Linear Regression Analysis of $Si_3N_4$ Ceramic Cutting Tools.)

  • 안영진;고영목;권원태;김영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.59-65
    • /
    • 2003
  • Four kinds of $Si_3N_4$-based ceramic cutting tools with different sintering time were fabricated to investigante the effect of sintering time on the microstructure, mechanical properties, grain sizes and the cutting performance. An endeavor was also made to determine the relation among mechanical property, Brain size and tool life. $Si_3N_4$ home made cutting tool sintered for 1 hour under $1760^{\circ}$ temperature and 25MPa pressure showed the best cutting performance among selected ceramic tools during machining both Bray cast iron and heat treated SCM440. Multiple linear regression model was used to estimate the tool lift from mechanical property, grain size and showed good result. It was also shown that hardness imposed the biggest offect on tool life.

  • PDF

마이크로 딥 드로잉 공정에서 박판소재의 크기효과 및 성형성에 관한 실험적 연구 (Experimental Study on the Size Effect and Formability of Sheet Materials in Microscale Deep Drawing Process)

  • 남정수;이상원;김홍석
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.793-798
    • /
    • 2015
  • This study investigates the effects of the size of copper sheets on the plastic deformation behavior in a microscale deep drawing process. Tensile tests are conducted on the copper sheets to study the flow stress of the materials with different grain sizes before carrying out the microscale deep drawing experiments. After the tensile tests, a novel desktop-sized microscale deep drawing system is used to perform the microscale deep drawing process. A series of microscale deep drawing experiments are subsequently performed, and the experimental results indicate that an increase in the grain size results in the reduction of the deformation load of the copper sheets due to the effects of the surface grain. The results also show that the blank holder gap improves both the formability of copper sheets and the material flow.

마그네슘합금의 초소성 특성과 응용 (Superplasticity of Magnesium Alloys and SPF Applications)

  • 심재동;변지영
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.53-61
    • /
    • 2017
  • Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.

저탄소 마르텐사이트 강의 냉간압연과 온간압연을 통한 미세조직 개질

  • 이종철;강의구;이중원;오창석;김성준;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2009
  • There have been a number of works on manufacturing ultrafine grained steels with average ferrite grain sizes of smaller than a few micrometers to develop beneficial high strength steels. Among microstructures in low carbon steels, lath martensite is known to be useful to produce an ultrafine grained ferrite matrix and finely globular cementite particle. Thus, severe plastic deformation and subsequent annealing at lower temperature of lath martensite would become an effective way to produce ultrafine grained steels. However, most ultrafine grained steels exhibited a total elongation of a few per cent in tensile tests. Such a defect is one of the primary factors restricting the potential applications of ultrafine grained steels. Therefore, the improvement of the strength-elongation balance is required for the application of ultrafine grained structural steels. In this study, the effect of deformation temperatures on microstructure, such as ferrite grain size and the distribution of cementite particles, and mechanical property of lath martensite steels, was investigated. Specimens were fabricated through cold rolling or warm rolling and subsequent annealing.

  • PDF