Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.10.535

Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates  

Lee, Sang-In (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Lim, Hyeon-Seok (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.10, 2016 , pp. 535-541 More about this Journal
Abstract
The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.
Keywords
recrystallization behavior; micro-alloying elements; steels; strain rate; reheating temperature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. J. Jonas and I. Weiss, Met. Sci., 13, 238 (1979).   DOI
2 T. Chandra, I. Weiss and J. J. Jonas, Met. Sci., 16, 97 (1982).   DOI
3 S. H. Cho, K. B. Kang and J. J. Jonas, ISIJ Int., 41, 63 (2001).   DOI
4 E. A. Simielli, S. Yue and J. J. Jonas, Metall. Trans. A, 23, 597 (1992).   DOI
5 M. G. Akben, B. Bacroix and J. J. Jonas, Acta Metall., 31, 161 (1983).   DOI
6 M. J. Luton, R. Dorvel and R. A. Petkovic, Metall. Trans. A, 11, 411 (1980).   DOI
7 R. Radis and E. Kozeschnik, Model. Simulat. Mater. Sci. Eng., 18, 055003 (2010).   DOI
8 S. Gunduz and R. C. Cochrane, Mater. Des., 26, 486 (2005).   DOI
9 F. Boratto, R. Barbosa, S. Yue and J. J. Jonas, International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC-88, 1, 383 (1988).
10 C. Zener and J. H. Holloman, J. Appl. Phys., 15, 22 (1944).   DOI
11 T. Gladman, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 294, 298 (1966).   DOI
12 K. B. Kang, O. Kwon, W. B. Lee and C. G. Park, Scripta Meter., 36, 1303 (1997).   DOI
13 S. S. Hansen, J. B. Vander Sande and M. Cohen, Metall. Trans. A, 11, 387 (1980).   DOI
14 H. J. McQueen and J. J. Jonas, Treatise on Materials Science and Technology, 6, 393 (1975).   DOI
15 S. H. Cho, M. S. Oh, C. Y. So and Y. C. Yoo, J. Korean Inst. Met. Mater., 33, 544 (1995).
16 B. Eghbali, Mater. Sci. Eng. A, 527, 3402 (2010).   DOI
17 I. Weiss and J. J. Jonas, Metall. Trans. A, 10, 831 (1979).   DOI
18 I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels, p.154, Butterworth & Co., Ltd., London, (1988).
19 O. Kwon and A. J. DeArdo, Acta Metall. Mater., 39, 529 (1991).   DOI
20 J. K. Choi, D. H. Seo, J. S. Lee, K. K. Um and W. Y. Choo, ISIJ Int., 43, 746 (2003).   DOI
21 S. W. Lee, D. H. Seo and W. Y. Choo, J. Korean Inst. Met. Mater., 36, 1966 (1998).
22 B. Eghbali and A. Abdollah-Zadeh, Mater. Des., 28, 1021 (2007).   DOI
23 O. Kwon and K. J. Lee, J. Korean Inst. Met. Mater., 36, 1866 (1998).
24 K. J. Irvine, F. B. Pickering and T. Gladman, J. Iron Steel Inst., 205, 161 (1967).
25 K. J. Irvine, T, Gladman, J. Orr and F. B. Pickering, J. Iron Steel Inst., 208, 717 (1970).
26 T. Gladman and D. Dulieu, Met. Sci., 8, 167 (1974).   DOI
27 B. Zhao, T. Zhao, G. Li and Q. Lu, Met. Mater. Int., 21, 692 (2015).   DOI
28 X. Tao, C. Li, L. Han and J. Gu, Met. Mater. Int., 21, 440 (2015).   DOI
29 N. Lsasti, D. Jorge-Badiola, L. M. Taheri and P. Uranga, Met. Mater. Int., 20, 807 (2014).   DOI
30 R. Shukla, S. K. Ghosh, D. Chakrabarti and S. Chatterjee, Met. Mater. Int., 21, 85 (2015).   DOI
31 T. Gladman, I. D. McIvor and F. B. Pickering, J. Iron Steel Inst., 209, 380 (1971).