Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.1.53

Superplasticity of Magnesium Alloys and SPF Applications  

Shim, Jae-Dong (Korea Institute of Science and Technology Information)
Byun, Ji-Young (Korea Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.1, 2017 , pp. 53-61 More about this Journal
Abstract
Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.
Keywords
magnesium alloys; superplasticity; grain size; deformation; strain rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I.-H. Jung, M. Sanjari, J. Kim and S. Yue, Scr. Mater., 102, 1 (2015).   DOI
2 C. Li, H. Sun, X. Li, J. Zhang, W. Fang and Z-Y Tan, J. Alloys Compd., 652, 122 (2015).   DOI
3 Y.-H. KIM and H.-T. Son, Trans. Nonferrous. Met. Soc. China, 26, 703 (2016).
4 J. Suh, J. Victoria-Hernandez, D. Letzig, R. Golle, S. Yi, J. Bohlen and W. Volk, J. Mater. Process. Technol., 217, 286 (2015).   DOI
5 X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, J. Alloys Compd., 509, 7579 (2011).   DOI
6 X. Huang, K. Suzuki, Y. Chino and M. Mabuchi, J. Alloys Compd., 632, 94 (2015).   DOI
7 L. Zhang, W. Chen, W. Zhang, W. Wang and E. Wang, J. Mater. Process. Technol., 237, 65 (2016).   DOI
8 X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito, J. Alloy Compd. 470, 263 (2009).   DOI
9 S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo and Q. Liu, Mater. Sci. Eng. A, 653, 93 (2016).   DOI
10 Y. Chino, K. Sassa, A. Kamiyaa and M. Mabuchi, Mater. Sci. Eng. A, 441, 349 (2016).
11 M. Kawasaki, R. B. Figueiredo and T. G. Langdon, Adv. Eng. Mater., 18, 127 (2016).   DOI
12 A. Karim, D. L. Holt and W. A. Backfen, Trans. Metall. Soc. AIME, 245, 2421 (1969).
13 H. K. Lin, J. C. Huang, T. G. Langdon. Mater. Sci. Eng. A, 402, 250 (2005).   DOI
14 R. B. Figueiredo and T. G. Langdon, J. Mater. Sci., 45, 4827 (2010).   DOI
15 R. Lapovok, Y. Estrin, M. V. Popov and T. G. Langdon, Adv. Eng. Mater., 10, 429 (2008).   DOI
16 Y. Miyahara, Z. Horita and T. G. Langdon, Mater. Sci. Eng. A, 420, 240 (2006).   DOI
17 T. G. Langon, Metall. Mater. Trans. A, 13, 689 (1982).   DOI
18 Y. Yoshida, K. Arai, S. Itoh, S. Kamado and Y. Kojima, Mater. Trans., 45, 2537 (2004).   DOI
19 R. B. Figueiredo and T. G. Langdon, Adv. Eng. Mater., 10, 37 (2008).   DOI
20 R. Lapovok, R. Cottam, P. F. Thomson and Y. Estrin, J. Mater. Res., 20, 1375 (2005).   DOI
21 H. Watanabe, T. Mukai, K. Ishikawa, Y. Okada, M. Kohzu and K. Higashi, J. Jpn. Inst. Light Met. (in Japan), 49, 401 (1999).   DOI
22 Edited by G. Guiliano, "Superplastic Forming Advanced Metallic Materials : Methods and Applications", pp. 20-22, Woodhead Pub. Oxford UK, (2011).
23 R. B. Figueiredo, S. Terzi and G. Langdon, Acta Mater., 58, 5737 (2010).   DOI
24 R. Alizadeh, R. Mahmudi, A. H. W. Ngan, Y. Huang and T. G. Langdon, Mater. Sci. Eng. A, 651, 786 (2016).   DOI
25 Y. Harai, M. Kai, K. Kaneko, Z. Horita and T. G. Langdon, Mater. Trans., 49, 76 (2008).   DOI
26 S. A. Torbati-Sarraf and T. G. Langdon, Adv. Mater. Res., 922, 767 (2014).   DOI
27 A. S. J. Al-Zubaydi, Mater. Sci. Eng. A, 637, 1 (2015).   DOI
28 O. B. Kulyasova, R. K. Islamgaliev, A. R. Kil'mametov and R. Z. Valiev, Phys. Met. Metall., 101, 585 (2006).   DOI
29 T. Masuda, K. Fujimitsu, Y. Takizawa and Z. Horita, J. Jpn Inst. Met. Mater. (in Japanese), 80, 128 (2016).
30 R. B. Figueiredoa and T. G. Langdona, Scr. Mater., 61, 84 (2009).   DOI
31 G. Garces, M. Maeso, P. Perez and P. Adeva, Mater. Sci. Eng. A, 462, 127 (2007).   DOI
32 G. Cao, D. Zhang, F. Chai, W. Zhang and C. Qiu, Adv. Eng. Mater., 28, 312 (2016).   DOI
33 Q. Yang, B. L. Xiao, Z. Y. Ma and R. S. Chen, Scr. Mater., 65, 335 (2011).   DOI
34 Q. Yang, B. L. Xiao, Q. Zhang, M. Y. Zheng and Z. Y. Ma, Scr. Mater., 69, 801 (2013).   DOI
35 H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Mater. Sci. Eng. A, 497, 326 (2008).   DOI
36 H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi, Mater. Sci. Eng. A, 307, 119 (2001).   DOI
37 W. J. Kim, I. K. Moon and S. H. Han, Mater. Sci. Eng. A, 538, 374 (2012).   DOI
38 X. Liu, G. Du, R. Wu, Z. Niu and M. Zhang, J. Alloys Compd., 509, 9558 (2011).   DOI
39 H. Watanabe, T. Mukai, K. Ishikawa, T. Mohri, M. Mabuchi and K. Hihashi, Mater. Trans., 42, 157 (2001).   DOI
40 W. J. Kim, S. W. Chung, C. W. An, J. Mater. Sci. Lett., 20, 1635 (2001).   DOI
41 T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, et al, Mater. Sci. Eng. A, 290, 139 (2000).   DOI
42 L. Li, X. Zhang, Y. Deng and C. Tang, J. Alloys Compd., 485, 295 (2009).   DOI
43 L. Li and X.-M. Zhang, Trans. Nonferrous Met. Soc. China, 21, 1491 (2011).   DOI
44 J. L. Li, D. Wu, Q. B. Yang and R. S. Chen, J. Alloys Compd., 672, 27 (2016).   DOI
45 W. J. Kim, J. D. Park and U. S. Yoon, J. Alloy Compd., 464, 197 (2008).   DOI
46 X. Wu, Y. Liu, Scr. Mater., 46, 269 (2002).   DOI
47 K. Lin, Z. Kang, Q. Fang and J. Zhang, Adv. Eng. Mater., 16, 381 (2014).   DOI
48 Industrial Technology Institute of Ibaraki Prefecture, Technical Report (in Japanese), No. 37, (2008).
49 Nippi Co. Ltd., Sokeizai (in Japanese), 53, 19 (2012).
50 Fadi K. Abu-Farha; Ph.D thesis, "Integrated Approach to the Superplastic forming of Magnesium Alloys", College of Eng., Univ. of Kentucky, (2007).