• Title/Summary/Keyword: Gradient operators

Search Result 44, Processing Time 0.02 seconds

A New Focus Measure Method Based on Mathematical Morphology for 3D Shape Recovery (3차원 형상 복원을 위한 수학적 모폴로지 기반의 초점 측도 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Shape from focus (SFF) is a technique used to reconstruct 3D shape of objects from a sequence of images obtained at different focus settings of the lens. In this paper, a new shape from focus method for 3D reconstruction of microscopic objects is described, which is based on gradient operator in Mathematical Morphology. Conventionally, in SFF methods, a single focus measure is used for measuring the focus quality. Due to the complex shape and texture of microscopic objects, single measure based operators are not sufficient, so we propose morphological operators with multi-structuring elements for computing the focus values. Finally, an optimal focus measure is obtained by combining the response of all focus measures. The experimental results showed that the proposed algorithm has provided more accurate depth maps than the existing methods in terms of three-dimensional shape recovery.

Singular Representation and Finite Element Methods

  • 김석찬
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.9-9
    • /
    • 2003
  • Let $\Omega$ be a bounded, open, and polygonal domain in $R^2$ with re-entrant corners. We consider the following Partial Differential Equations: $$(I-\nabla\nabla\cdot+\nabla^{\bot}\nabla\times)u\;=\;f\;in\;\Omega$$, $$n\cdotu\;0\;0\;on\;{\Gamma}_{N}$$, $${\nabla}{\times}u\;=\;0\;on\;{\Gamma}_{N}$$, $$\tau{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$, $$\nabla{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$ where the symbol $\nabla\cdot$ and $\nabla$ stand for the divergence and gradient operators, respectively; $f{\in}L^2(\Omega)^2$ is a given vector function, $\partial\Omega=\Gamma_{D}\cup\Gamma_{N}$ is the partition of the boundary of $\Omega$; nis the outward unit vector normal to the boundary and $\tau$represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both $\Gamma_{D}$ and $\Gamma_{N}$ are nonempty. Denote the curl operator in $R^2$ by $$\nabla\times\;=\;(-{\partial}_2,{\partial}_1$$ and its formal adjoint by $${\nabla}^{\bot}\;=\;({-{\partial}_1}^{{\partial}_2}$$ Consider a weak formulation(WF): Find $u\;\in\;V$ such that $$a(u,v):=(u,v)+(\nabla{\cdot}u,\nabla{\cdot}v)+(\nabla{\times}u,\nabla{\times}V)=(f,v),\;A\;v{\in}V$$. (2) We assume there is only one singular corner. There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.

  • PDF

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

A Novel Low-Complex and High-Performance Image Quality Assessment Metric based on Simple Gradient Operators (단순 기울기 연산자 기반의 새로운 저복잡도 고성능 영상 화질 측정 척도)

  • Bae, Sung-Ho;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.81-83
    • /
    • 2015
  • 객관적 영상 화질 측정(Image Quality Assessment: IQA)방법은 영상 화질 최적화 문제해결을 목적으로 하는 영상 처리 및 컴퓨터 비전 분야에 매우 중요하게 사용된다. 이를 위해, 저복잡도, 고성능 및 좋은 수학적 특성(예를 들어, 척도성(metricability), 미분가능성(differentiability) 및 볼록 성질(convexity))을 모두 만족시키는 객관적 IQA 방법이 활발히 연구되어 왔다. 그러나, 위해 위에서 언급한 좋은 수학적 특성을 가지는 대부분의 객관적 IQA 방법들은 좋은 수학적 특성을 만족시키기 위해 상당한 예측성능의 감소를 초래했다. 본 논문은 위에서 언급한 좋은 수학적 특성을 모두 만족시키면서, 예측 성능이 향상된 새로운 IQA 방법을 제안한다. 인간 시각 체계의 감수영역은 광도 입력에 대해 공간 도메인에서 미분 형태의 응답을 가지므로, 제안 방법은 이러한 시각 체계 응답을 모방하여 기울기 연산자를 도입한다. 제안한 방법에서 도입한 기울기 연산자는 매우 단순하게 설계되어, 계산 복잡도가 매우 낮다. 광범위한 실험 결과, 제안하는 IQA 방법은 기존 수학적 특성이 좋은 IQA 방법들 대비 더 좋은 성능을 보이면서 계산 복잡도 또한 낮았다. 따라서 제안 IQA 방법은 다양한 영상 화질 최적화 문제에 매우 효과적으로 적용될 수 있다.

  • PDF

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow (대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.

The Effect of Badges Gamification on Participation Behavior in StackOverflow (스택오버플로 배지 시스템의 게임화 효과에 관한 연구)

  • Nam, Jeongin;Baek, Hyunmi
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.1-22
    • /
    • 2022
  • This study aims to investigate the gamification effect of the badge awards, the most popular gamification process, on users participation behavior. This study also attempts to investigate the effect of tailored gamification, which designs the system of gamification differently based on users' characteristics, focusing on the level of online user information disclosure. For this, we collect and analyze data on 557 users and 1,048,020 answers from StackOverflow, an online Q&A community for developers. The results show that providing a badge is effective for increasing the amount of user participation, whereas providing a goal through the badge is partially effective for increasing the quality of participation. However, the moderating effect of whether users disclose their SNS information on the relationship between badge gaining and participation decrease is not statistically significant. For platform operators, our findings emphasize the importance of gamification design to enhance user engagement effectively.