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Abstract – Rapid development of cities with constant increasing load and deregulation in electricity 
market had forced the transmission lines to operate near their threshold capacity and can easily lead to 
voltage instability and caused system breakdown. To prevent such catastrophe from happening, 
accurate readings of voltage stability condition is required so that preventive equipment and operators 
can execute security procedures to restore system condition to normal. This paper introduced Enhanced 
Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which 
utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network 
to the collapse point when the reactive load in the system increases because reactive load gives the 
highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been 
combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that 
worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima 
convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that 
the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High 
generalization ability was found in the proposed algorithm. 
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1. Introduction 
 
Power system stability can be divided into angle stability 

and voltage stability. It can be further divided into transient 
stability, small signal stability, large disturbance and small 
disturbance voltage stability [1]. Power system stability 
refers to the ability of a power system network to retain 
its functionality when subjected to disturbance. Voltage 
stability on the other hand refers to the ability of a power 
system network to maintain its voltage at all the buses 
without causing the system to fail after subject to 
disturbance [2]. A sudden increase in load, loss of a heavily 
loaded transmission line, failure in protective coordination 
system or insufficient reactive power supply could lead 
to voltage collapse or in more serious cases can lead to 
cascading outages and blackouts. Several major voltage 
collapse cases had been reported in France in 1987, 
Sweden in 1983, in Japan in 1987 [3], in the USA in 1996 
and 2003 [4, 5], Italy in 2003 [5], and England in 2003 [5]. 

Modern days power system network are being pushed 
to operate near the threshold due to development and 
deregulations of electricity market. In order to cater with 
the increment of severe voltage instability problem, accurate 
predictions of voltage collapse point and rapid voltage 

stability analysis with little calculation and processing time 
become major concern. With the improvement in prediction 
method and technology, the possibilities of voltage collapse 
can be figured out and the operator will be able to make 
adjustment on time to prevent the network goes awry. 

Several methods had been used for analysis of static 
voltage stability. Some methods determine the exact values 
of voltage collapse such Jacobian method [6], singular 
value index [7], modal method [8] and voltage sensitivity 
method [9] while others determine the bifurcation point to 
predict voltage stability margins [10]. Determination of 
maximum load enables assessment of proximity to voltage 
collapse [11], and the use of continuation power flow to 
determine the weakest bus of the system [12, 13]. Despite 
all methods described above are used to conduct voltage 
stability analysis, they were unable to predict or acquire 
conditions of the stability of the system without intensive 
calculations. This will consumed a lot of time and 
instantaneous solution has to be obtained as voltage 
instability occurs very fast from seconds to just a few 
minutes. It may be too late to avoid voltage collapse 
occurrences if the condition of the system is not known 
instantly. The level of accuracy of these methods also 
varies from one to another which is an essential factor for 
voltage collapse avoidance. 

The rise of on-line-based voltage stability assessment 
had brought more possibilities in improving the efficiency 
and accuracy of voltage stability prediction. The use of 
various line-based voltage stability indices in on-line 
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stability analysis such as Fast Voltage Stability Index 
(FVSI) [14], Line Stability Index (Lmn) [15], Line 
Stability Index (Lp) [16], Line Stability Index (NLSI) [17], 
Voltage Collapse Prediction Index (VCPI) [11] and L-index 
[18] are common. The use of voltage stability indices are to 
search for weak buses and give indication of the condition 
of the buses. L-index formulated by Kessel and Glavitsch 
[18] had also been used by researchers in power system 
for the same reason. FVSI was being applied to solve 
contingency problem of voltage stability in [14, 19] and the 
results showed good indication on the variation of reactive 
loadings with good accuracy. 

ANN is a common method that had been applied in 
solving voltage stability problems. ANN is a class of 
mathematical algorithms that emulate the biological neural 
networks in the human brain [20, 21]. There are a few 
models available in the ANN including feedforward 
network and feedback network, where they had been widely 
employed in various field in predicting and doing 
classification. ANN possessed the capabilities of learning 
and adaptation as well as being able to generalize given 
information [20, 21]. ANN had been used as earlier as in 
1996 in the assessment and enhancement of voltage stability 
using multiplayer perceptron [22]. However, the method 
gives several problems as the system cannot be trained too 
much or too little. The convergence of the load flow solution 
might sometimes give local minimum after training. As 
ANN method keeps improving, Radial Basis Function 
Neural Network had been proposed and claimed to be more 
superior compared to the previous methods and also 
capable of determining available transfer capability and 
stability of voltage in the system [23, 24]. Implementation 
of feed forward neural network with a stability index is fast 
and allowing the monitoring of the stability margin in real 
time after being trained offline [25, 26]. 

Today, one of the most promising computational 
intelligence (CI) algorithms came from the Swarm 
Intelligence (SI). SI consists of a series of algorithms which 
came from the study on the behaviour and interaction 
between lower intelligence organisms [27, 28]. There were 
a lot of SI method proposed and some of the more popular 
methods that had been applied in the field of electrical 
studies are the Particle Swarm Optimization (PSO), 
Artificial Bee Colony (ABC) and Ant Colony Optimization 
(ACO). Recently, PSO had become popular and had been 
employed actively in power system and reviews had been 
carried out to give researchers the basic idea of PSO and 
its possible applications in various fields of studies [29, 
30]. The uprising of PSO had motivated power system 
researchers to do analysis based on this highly robust 
algorithm to find global optimum solution in parameter 
tuning of STATCOM and FACTS device, improving 
voltage profile through optimal capacitor placement and 
FACTS devices to reduce losses [31, 32]. PSO had also 
been discovered to have solved reconfiguration problems 
in power system noted [32]. PSO has faster convergence 

rate and is able to search for global optimal solution in 
most cases with slightly higher computational time 
compared with GA. Due to each of the CI methods had its 
own advantages and drawbacks, researchers had started to 
hybridize various CI together to form a much superior 
algorithm to solve power system stability problems. [33] 
had combined GA with ANN in order to solve optimal 
power flow problems that yield faster computational time 
with small error in the result.  

 
 

2. Problem Formulation 
 
By having an accurate prediction on voltage stability 

condition of the power system network, preemptive 
decision could be carried out to stop an impending collapse 
of voltage stability of the network either by operators or 
automatic devices. The main objective of this study is to 
minimize the error of the prediction system by reducing the 
sum of square error between the actual and predicted 
output information about the stability condition. Therefore, 
the objective function of the proposed methodology is the 
sum of square error between the output Fast Voltage 
Stability Index (FVSI) values and target FVSI values. FVSI 
is a line stability index proposed by I. Musirin et al. [14] 
to determine the voltage stability condition of a power 
system network. He used the concept of power flowing 
through a single transmission line. From Fig. 1, by 
assuming that 1 0d = (taking Bus 1 as reference) and 2d =  
d- , the current, I  can be defined as: 
 

1 1VÐ¶

1 1 1S P jQ= +

2 2V Ð¶

2 2 2S P jQ= +
Z R jXqÐ = +

 
Fig. 1. A typical 2 bus transmission line 
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Hence, a quadratic equation of V2 can be formed: 
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For real values to exist for V2, there must be real roots 

for the equation: 
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Therefore, for the line to be stable and taking the symbol 
i and j as sending end and receiving end bus, 
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Since sin 0d » and cos 1d » , therefore we can assumed 

that sin 0R d » and cosX Xd » , the FVSI can be simplify 
as: 
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Then, the FVSI values will be calculated using the load 

flow program in Matlab programming environment by 
varying the loadings in the load buses of IEEE 14-bus and 
30-bus test system. With all the values of the loadings and 
their corresponding FVSI values at each transmission lines, 
sets of data will be generated in order to train the algorithm 
to perform its prediction duty. With it, sets of data consist 
of the predicted values and target values will be used to 
evaluate the sum of square error (SSE) between them, 
which can be shown in the equation below: 

 
( )

2

/
1

m

actual predicted target
i

SSE X X
=

= -å   (8) 
 

where m = 1, 2, 3, 4, 5...mmax 
Since the aim in this study is to minimize the objective 

function, so the lower the SSE, the more accurate is the 
prediction system. 

 
 

3. Artificial Neural Network 
 
Artificial Neural Network (ANN) is a popular method 

employed in different field of studies especially 
mathematics and computer science to solve problems 
involving estimation, classification, and optimization. 
ANN emulates the neuron in the brain, transmitting data 
through its many linkage or pathway. In the process, it will 
be able to learn, memorize the data sent and be able to 
interpret the messages. Therefore, an ANN is consists of 
the input layer with messages or data, the weights as the 
synapses that connect all the neurons together and an 
output layer to show the processed information. Through 
effective training of the weights in ANN, the system will 
be able to give good solution according to the requirements. 
There are many types of ANN algorithm such as the back 
propagation, probabilistic ANN, Kohonen Network and 
others which differs in terms of training and updating 
algorithm used. 

Feed forward back propagation is one of the most 
popular types of ANN and had been used in various 
applications with good accuracy and performance when the 
correct parameters are selected. Back propagation algorithm 

trains the ANN weights by returning the error value 
between the current output and the targeted output of all 
the input data being used. Using these error values, the 
weights are being updated through the BP algorithm and 
again the required outputs will be calculated using the 
updated weights. The process will be repeated until the 
accumulated errors or sum of squares of errors had reached 
a feasible value, the minimum error had been achieved or 
the ANN had reached certain conditions such as the 
maximum epoch or minimum threshold. The basic 
configuration of a BPANN is as shown in the Fig. 2 on next 
page. 

 
 

4. Particle Swarm Optimization 
 
PSO is an optimization technique developed by Kennedy 

and Eberhart in 1995. The idea came from observing the 
social behavior of bird flocks flying in synchronism while 
changing direction and meanwhile, maintaining a safe 
distance between each of their neighboring birds in an 
optimal formation. PSO is being classified as a 
metaheuristic, population-based optimization method that 
can gives good solution to function-based problems. 
Compared to other metaheuristic methods like Genetic 
Algorithm (GA) and Evolution Programming, PSO has its 
advantages in terms of convergence speed and less 
susceptible to converge to sub-optimal solution. Besides, 
PSO has less parameter to alter, rendering easier case by 
case parameter configuration in order to search for the best 
configuration and also reduced time required to obtain a 
solution. In general, PSO technique can be achieved by 
following the steps below: 

( i ) Step 1: Initialize the population with a number of 
particles, N and other parameters 

(ii) Step 2: Initialize the position, X and velocity, V of all 
the particles in the population with random values set 
within certain range 

 
While the termination criterion is not met or maximum 

iterations are not reached: 

(iii) Step 3: For every particle, the fitness value, F is 
calculated and compared with the previous best fitness 
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Fig. 2. Configuration of a 3 layers ANN 
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value (pbest). If the current pbest is better (smaller or 
larger depending on objective function and required 
solution), replace the previous pbest with current pbest. 

(iv) Step 4: Then, choose the best fitness value among all 
the particles and label it as the global best fitness 
(gbest). 

(v) Step 5: Calculate the particles velocity, newV  by using 
the equation: 

     
new iter current

1 previous current

previous current

V  = W V
+ C random (pbest pbest )
+ C2 random (gbest gbest )

´

´ ´ -

´ ´ -
 

(vi) Step 6: Update the particles new position, new X by 
using the equation: 

 new previous newX = X  + V  
 
 

5. EHPSO-ANN 
 
The problem that is needed to solve in this paper is to 

predict the voltage stability of the transmission system. 
Therefore, a prediction system must be developed and an 
indicator must be used so that the voltage stability can be 
seen clearly and simpler to understand by anyone. A VSI 
will be used as the indicator, which is the FVSI that is able 
to give fast and accurate readings of a system's voltage 
stability on reactive loadings changes. FVSI is chosen due 
to its sensitivity to reactive load changes and ability to 
trace voltage stability limit accurately through numerical 
value. BPANN had always been one of the most effective 
and efficient algorithm in solving prediction problems, 
however because of its frequent instability and lacking 
accuracy that had been mention in the previous section, 
an improved training algorithm must be applied to the 
ANN. Due to the fact that PSO is an optimization method, 
therefore, in order to improve the accuracy of the 
prediction, an enhanced hybrid PSO-based ANN is being 
proposed. By replacing the training and updating part of 
the BPANN with PSO, the new EHPSO-ANN algorithm is 
formulated in this paper. PSO had been chosen to achieve 
this objective because PSO has fast convergence rate, has 
reduced chance to converge into local minimum than 
BPANN as well as other optimization method like GA, 
hence improved stability of the overall system and able to 
obtain high accuracy with low iterations. PSO is responsible 
for searching the optimal weights for the ANN.  

The workings of EHPSO-ANN are divided into 
following steps as mention in next 2 page and in Fig. 3: 

( i ) Step 1: Initialize the ANN with the number of layers, 
numbers of hidden neurons, inputs, outputs and other 
parameters 

(ii)  Step 2: Initialize population of PSO, number of 
particles, randomized the initial position of the particles 
(in terms of ANN, the weights) and their velocity and 

other parameters 
 
For every particle (Start looping), 

(iii) Step 3: Evaluate the ANN by computing their total 
sum of square error (SSE) between the actual outputs 
and the targeted outputs.  

(iv) Step 4: The SSE from the ANN is passed to the PSO as 
the fitness value and compared with the previous best 
fitness value (pbest). If the current pbest is smaller, 

 
Fig. 3. Flowchart of EHPSO-ANN algorithm 
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replace the previous pbest with current pbest. 
(v) Step 5: From all the calculated fitness value of the 

particles, choose the global best, gbest value which 
contain the minimum fitness value and then store its 
corresponding weights. 

(vi) Step 6: Later, calculate new velocity of the particles 
and update the new position of the particles. 

(vii) Step 7: Repeat steps (iii)-(vi) until the termination 
criterion had reached or the solution had converged. 

(viii) Step 8: Record the gbest of the converged solution and 
the weights. Then replaced the weights of the first 
particle in the PSO with the gbest weights of previous 
iteration. 

End Loop. 
 

(ix) Step 9: Repeat Steps (ii)-(viii) by maintaining the 
gbest's weights from previous epoch on the first 
particle of PSO while randomizing the weights of other 
particles until the solution converged or termination 
criteria had reached. 

 
Several hybrids of PSO with ANN had been proposed by 

researchers to aid in their respective field of studies. In [34-
35], feed forward ANN had been used to hybridize with 
PSO in weight optimization where the output from the PSO 
is considered the required solution for the problem. Besides 
direct implementation of PSO in ANN algorithm which is 
commonly written as PSO-ANN, [36-38] decided to separate 
the usage of PSO by first running the ANN program then 
optimized the output from the ANN using the PSO 
algorithm. In this paper, feed forward back propagation 
ANN is being hybridized and modified with the PSO 
algorithm where the output after the PSO iterations is being 
back propagated to the ANN again with a certain amount 
of loops. The enhanced algorithm became a single process. 
Also, the weights of gbest from the previous loop will 
become the weights of the first particle of PSO while the 
rest of the particles will be randomized again. This step is 
important as to give the algorithm versatility and can avoid 
PSO from converging into a suboptimal solution by 
allowing the other particles to search in other spaces within 
the boundary.  

 
 

6. Results and Discussion 
 
In order to demonstrate the effectiveness of the proposed 

EHPSO-ANN algorithm, it will be compared with the 
BPANN, PSO-ANN [34]-[35] and separate PSO-ANN 
(SPSO-ANN) [36]-[38] in predicting the voltage stability 
for IEEE 14-bus and 30-bus test system. Before proceed to 
the case study, the data has to be provided first to train the 
system to be able to function properly as a prediction 
system. To obtain the data, 8 of the load buses in the test 
system had been varied by randomly increasing their 

reactive load before passing them to the load flow program. 
The process will continue until the load flow program 
diverged and then some of the load buses will be reset to its 
base loading before continue to collect data. Then the 
corresponding FVSI value for each line in the test system 
will be calculated and stored. A total of 300 sets of data had 
been prepared for the use of the algorithms in 14-bus test 
system while 800 sets of data were provided by the 30-bus 
test system. During the training of the system, if the 
stopping criteria were not fixed, the ANN will continue to 
operate until it reaches the maximum iteration. In this case, 
the ANN will become too focused on the training data set 
and when the testing data set is used, it might give a poor 
solution due to loss of generalization ability, which this 
condition was referred to as overtraining. In order to avoid 
overtraining of the prediction system, validating set had 
been implemented into both the systems. A 3 layers ANN 
was used throughout the study. For EHPSO-ANN, PSO-
ANN and SPSO-ANN, a total of 100 numbers of iterations 
was used for 14-bus system and 200 for 30-bus system 
while BPANN had used 100 for first and second case in 14-
bus system while 1000 iteration for 30-bus system, analysis 
and comparing purposes in the third case of 14-bus system. 
In 14-bus test system, line connecting bus 13 and bus 14 
that is considered the most vulnerable bus is being used as 
to carry out the FVSI calculations and algorithm tests while 
for 30-bus test system, line connecting bus 24 and bus 25 is 
chosen for the same reason stated above. 

In the first case, a 5 hidden nodes neural network was 
used to show the convergence of both the algorithm. With 
the implementation of velocity clamping in the EHPSO-
ANN, it drastically improved the convergence speed of the 
system and maintained the stability of the system whereby 
without clamping the particles velocity, the particle might 
expand its search in a very wide space and might not 
converge or causes the PSO to fluctuate near the optimal 
location. Stability of the BPANN algorithm is always an 
issue and therefore it gave a huge fluctuation and has 
higher chance of converging into suboptimal solution or in 
some rare cases, diverged into a bad solution. Therefore, 
EHPSO-ANN gave a better convergence curve without 
oscillating intensively near the optimal solution and the 
convergence speed in unmatched by BPANN. As for the 
common PSO-ANN, it retains the fast convergence speed 
of PSO but still oscillate for some time until settled down 
at its optimal point. However, the SPSO-ANN have the 
same problem as the BPANN in convergence because it is 
actually the regular BPANN at the training phase and PSO 
is being used later on. In the first epoch, the total SSE of 
both BPANN and SPSO-ANN is high on training phase 
that is 3.454 and at validating phase, it projects its SSE on 
0.390. But for PSO-ANN and EHPSO-ANN, the training 
phase yields only 2.5442 and 0.1091 respectively on total 
SSE. During the validating phase, it gives only total SSE of 
0.0512 for EH-PSOANN. Because the validating phase for 
PSO-ANN is done once after the training process, therefore 
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it has only a single validating SSE which is 0.0404. As the 
epoch increases, the total SSE of BPANN and SPSO-ANN 
reduces and then oscillates near its suboptimal solution. 
PSO-ANN also oscillates in the beginning and later on 
slows down and then completely vanished when the 
optimal value is reached. However, in EHPSO-ANN, the 
system barely oscillates and quickly converged into its best 
solution. In both BPANN and SPSO-ANN, the minimum 
SSE found are 0.02793 in training phase and 0.007071 in 
validating phase. For PSO-ANN and EHPSO-ANN, the 
lowest SSE recorded is 0.0657 and 0.001476 respectively 
in training phase while for validating phase, their values 
were recorded as 0.04042 for PSO-ANN and 0.0042 for 
EH-PSOANN..  

The same condition happened in the IEEE 30-bus test 
system as well. In the training phase of BPANN and SPSO-
ANN, the SSE converged with some oscillation but better 
than in 14-bus system into 0.0282. However, the validating 
solution shows minimum SSE of 0.2083 and the last epoch 
at SSE of 0.6441. This shows that both the algorithms 
converged into a suboptimal solution which is the 
weakness of the ANN method, and in some paper, if the 
author did not apply validating phase in his work, he will 
get even worse solution in the testing phase and lead to 

poor prediction. For PSO-ANN, the training solution 
although converged into large SEE value compared to the 
others, but its validating phase actually converged into a 
better solution that the 2 methods mentioned before at SSE 
of 0.1643. The reason is because PSO is capable of fast 
convergence and will converged into good solution 
compared with BPANN. As for the proposed method, it 
was able to converge into good training solution as well as 
validating phase SSE also gave the best results out of all 
which is at 0.0137. Table 1, Table 2, Fig. 4, Fig. 5, Fig. 6 
and Fig. 7 below show the detailed result mentioned above. 

Next, the accuracy of the proposed algorithm is tested by 

Table 1. Comparison of Convergence Speed (14 bus) 

Conditions BPANN 
(SSE) 

PSO-ANN 
(SSE) 

SPSO-ANN 
(SSE) 

EH-PSO 
ANN (SSE) 

Training (1st) 3.4540 2.5442 3.4540 0.1091 
Validate (1st) 0.3900 - 0.3900 0.0512 
Training (last) 0.0279 0.0657 0.0279 0.0015 
Validate (last) 0.0071 0.0404 0.0071 0.0042 
 

Table 2. Comparison of Convergence Speed (30 bus) 

Conditions BPANN 
(SSE) 

PSO-ANN 
(SSE) 

SPSO-ANN 
(SSE) 

EH-PSO 
ANN (SSE) 

Training (1st) 2.3946 5.7429 2.3946 0.2778 
Validate (1st) 1.2479 - 1.2479 0.1019 
Training (last) 0,0282 0.3808 0.0282 0.0166 
Validate (last) 0.6441 0.1643 0.6441 0.0137 
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Fig. 4. Convergence curve of training phase (14-bus) 
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Fig. 5. Convergence curve of validating phase (14-bus) 
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Fig. 6. Convergence curve of training phase (30-bus) 
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Fig. 7. Convergence curve of validating phase (30-bus) 
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comparing the SSE of its testing data with the other 
algorithms and the results can be shown in Table 3, Table 
4, Fig. 8 and Fig. 9. The accuracy found in term of SSE 
in EHPSO-ANN is 0.00409 while BPANN, SPSO-ANN 
and PSO-ANN only have 0.0222, 0.0131 and 0.037 
respectively tested with 14-bus test system. In 30-bus test 
system, EH-PSOANN also scored the lowest SSE of all 
other at 0.0107 while BPANN, SPSO-ANN and PSO-ANN 
registered 0.023, 0.0177 and 0.1643 respectively. While 
14-bus test system was used, the total error for EHPSO-
ANN is 0.3859 while it is 0.7831 for BPANN, 0.5374 for 

SPSO-ANN and 1.0376 for PSO-ANN. When these 
algorithms were tested in 30-bus system, the recorded sum 
of error were 0.7033 for the proposed algorithm while for 
the other methods used, the total error increases to 1.5882 
for SPSO-ANN, 1.9692 for BPANN and the highest 4.2204 
for PSO-ANN. This shows that EHPSO-ANN have the 
upper hand in the prediction of the voltage stability and 
this values are very important as the better is the predicted 
results, the performance of the system and the quality of the 

Table 3. Accuracy of both algorithms (14 bus) 

Errors BPANN PSO-ANN SPSO-ANN EH-PSOANN 
SSE 0.0222 0.037 0.0131 0.0041 

Sum of 
Errors 0.7831 1.0376 0.5374 0.3859 

 
Table 4. Accuracy of both algorithms (30 bus) 

Errors BPANN PSO-ANN SPSO-ANN EH-PSOANN 
SSE 0.0230 0.1643 0.0177 0.0107 

Sum of 
Errors 1.6969 3.6375 1.4382 0.8064 
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Fig. 8. Graph of testing phase (14-bus) 
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Fig. 9. Graph of testing phase (30-bus) 

Table 5. Table of test data (SSE) 

TARGET BPANN PSO-ANN SPSO-ANN EHPSO-ANN 
0.0839 0.0793 0.1175 0.0833 0.1000 
0.0714 0.0813 0.1191 0.0913 0.1039 
0.1017 0.0911 0.1290 0.1094 0.1134 
0.1049 0.1052 0.1358 0.1136 0.1212 
0.1278 0.1183 0.1368 0.1333 0.1351 
0.1547 0.1405 0.1548 0.1367 0.1491 
0.1750 0.1636 0.1622 0.1617 0.1583 
0.1696 0.1684 0.1556 0.1524 0.1608 
0.2000 0.1913 0.1640 0.1932 0.1853 
0.2009 0.1924 0.1715 0.1991 0.1904 
0.2118 0.1990 0.1884 0.2042 0.2010 
0.2154 0.2059 0.1835 0.2023 0.2072 
0.2115 0.2096 0.1959 0.2034 0.2200 
0.2103 0.2093 0.1989 0.2121 0.2221 
0.2282 0.2270 0.2053 0.2309 0.2403 
0.2411 0.2369 0.2177 0.2331 0.2450 
0.2477 0.2372 0.2237 0.2401 0.2504 
0.2611 0.2474 0.2347 0.2512 0.2630 
0.2661 0.2528 0.2436 0.2588 0.2730 
0.2705 0.2594 0.2635 0.2603 0.2777 
0.2767 0.2642 0.2705 0.2621 0.2891 
0.3372 0.3252 0.3459 0.3316 0.3310 
0.3697 0.3574 0.3657 0.3626 0.3728 
0.3641 0.3554 0.3635 0.3786 0.3802 
0.3934 0.3812 0.3827 0.3845 0.4009 
0.4381 0.4374 0.4225 0.4313 0.4093 
0.4058 0.3942 0.3903 0.4108 0.4214 
0.4492 0.4424 0.4207 0.4456 0.4583 
0.4760 0.4592 0.4547 0.4821 0.4925 
0.5142 0.5055 0.5049 0.5047 0.5185 
0.5226 0.5148 0.5011 0.5262 0.5264 
0.5490 0.5401 0.5655 0.5411 0.5689 
0.5778 0.5633 0.5519 0.5810 0.5862 
0.6046 0.5939 0.6039 0.5846 0.6206 
0.6509 0.6422 0.6411 0.6679 0.6627 
0.6557 0.6490 0.6240 0.6518 0.6606 
0.7101 0.7108 0.7048 0.7151 0.7280 
0.7263 0.7232 0.7268 0.7219 0.7583 
0.7314 0.7241 0.7236 0.7670 0.7719 
0.8006 0.7988 0.8256 0.7912 0.8462 
0.8630 0.8647 0.8838 0.8486 0.9050 
0.8807 0.8766 0.8872 0.9020 0.9151 
0.8949 0.8959 0.8783 0.8831 0.9267 
0.9154 0.9298 0.9027 0.9441 0.9551 
1.0198 1.0266 0.9819 1.0216 1.0107 
1.0343 1.0460 0.9771 1.0160 1.0166 
1.0873 1.0799 0.9793 1.0316 1.0275 
0.9760 0.9820 1.0215 1.0420 1.0222 
1.0434 1.0480 1.0254 1.0493 1.0364 
1.0566 1.0606 1.0317 1.0631 1.0431 
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electrical supply will improved. Without any modification 
on the regular PSO-ANN, the algorithm seems to not be 
able to converge into a better solution because of its 
advantage, which is the convergence speed. BPANN is 
slow to converge and could get into a better solution than 
unmodified hybrid PSO with the help of validating phase 
but there were also limitation in what it can do. SPSO-
ANN gave a solution somewhere in between BPANN and 
EH-PSOANN. Table 5 is on page 883 and Table 6 is 
directly on page 884 show the overall test data that had 
been collected from the algorithm. 

 
Table 6. Table of test data (SSE) 

TARGET BPANN PSO-ANN SPSO-ANN EHPSO-ANN 
0.2736 0.2635 0.2760 0.2665 0.2666 
0.2755 0.2654 0.2764 0.2672 0.2686 
0.2832 0.2724 0.2744 0.2762 0.2772 
0.2835 0.2727 0.2743 0.2715 0.2773 
0.2846 0.2737 0.2743 0.2923 0.2788 
0.2938 0.2822 0.2771 0.2853 0.29 
0.2951 0.2833 0.2770 0.2856 0.2901 
0.2976 0.2855 0.2808 0.2913 0.2919 
0.3028 0.2904 0.2819 0.2966 0.2977 
0.3090 0.2939 0.2869 0.2990 0.3002 
0.3106 0.298 0.2890 0.3017 0.305 
0.3177 0.3036 0.2880 0.3052 0.3114 
0.3211 0.306 0.2908 0.3080 0.3171 
0.3246 0.3085 0.2972 0.3093 0.3223 
0.3290 0.3122 0.3006 0.3116 0.3271 
0.3323 0.3156 0.3019 0.3189 0.3319 
0.3340 0.3171 0.3047 0.3263 0.3324 
0.3386 0.3217 0.3145 0.3281 0.333 
0.3408 0.3238 0.3196 0.3211 0.3477 
0.3470 0.3296 0.3245 0.3246 0.3505 
0.3525 0.3353 0.3273 0.3420 0.3574 
0.3623 0.3440 0.3214 0.3445 0.3657 
0.3682 0.3495 0.3403 0.3559 0.3657 
0.3758 0.3557 0.3551 0.3602 0.3769 
0.3769 0.3567 0.3598 0.3672 0.3862 
0.3783 0.3581 0.3617 0.3617 0.3873 
0.3799 0.3595 0.3641 0.3621 0.389 
0.3874 0.3631 0.3554 0.3648 0.3918 
0.3883 0.3682 0.3625 0.3654 0.3953 
0.3928 0.3728 0.3531 0.3783 0.3982 
0.3978 0.3772 0.3605 0.3902 0.3936 
0.4010 0.3805 0.364 0.3925 0.3952 
0.4166 0.3962 0.3774 0.3942 0.4103 
0.4176 0.397 0.3826 0.3978 0.4109 
0.4205 0.4003 0.3978 0.3990 0.4129 
0.4214 0.4036 0.4045 0.4011 0.4199 
0.4299 0.4101 0.4148 0.4153 0.4214 
0.4346 0.4139 0.4228 0.4189 0.431 
0.4400 0.4183 0.4335 0.4207 0.4346 
0.4441 0.4216 0.4525 0.4239 0.4457 
0.4467 0.4245 0.4578 0.4286 0.4422 
0.4482 0.4256 0.4648 0.4315 0.4443 
0.4593 0.4379 0.5004 0.4404 0.4659 
0.4614 0.4401 0.5106 0.4421 0.4678 
0.4617 0.4406 0.5095 0.4468 0.4586 
0.4652 0.4436 0.5102 0.4493 0.4614 
0.4662 0.4444 0.5107 0.4495 0.4651 
0.4717 0.4488 0.5146 0.4502 0.4665 

0.4730 0.4505 0.51 0.4588 0.4682 
0.4762 0.4541 0.5199 0.4635 0.4782 
0.4787 0.4565 0.5229 0.4653 0.4822 
0.4796 0.4582 0.5385 0.4666 0.4849 
0.4921 0.4704 0.5438 0.4843 0.4861 
0.5028 0.4805 0.6093 0.4858 0.4905 
0.5065 0.4855 0.5986 0.4889 0.4956 
0.5072 0.4865 0.5345 0.4973 0.5014 
0.5170 0.4998 0.558 0.5037 0.5104 
0.5229 0.504 0.5571 0.5066 0.5148 
0.5237 0.5047 0.4922 0.5113 0.5157 
0.5246 0.5056 0.4935 0.5125 0.5181 
0.5299 0.5123 0.4838 0.5197 0.5196 
0.5301 0.5124 0.4702 0.5246 0.5433 
0.6873 0.6883 0.6396 0.6736 0.6575 
0.7031 0.7000 0.6922 0.6823 0.6827 
0.7202 0.7209 0.7005 0.7184 0.7153 
0.7207 0.7218 0.6781 0.7193 0.7157 
0.7227 0.7281 0.7093 0.7245 0.7216 
0.7245 0.7297 0.7124 0.7310 0.7218 
0.7315 0.7365 0.7255 0.7396 0.7216 
0.7384 0.7456 0.7291 0.7465 0.7459 
0.7461 0.76 0.7575 0.7538 0.7491 
0.7467 0.7616 0.7557 0.7503 0.7513 
0.7549 0.7682 0.7473 0.7622 0.7551 
0.7699 0.7764 0.7602 0.7721 0.7579 
0.7735 0.7789 0.7654 0.7815 0.7609 
0.7760 0.7864 0.8008 0.7644 0.7637 
0.7887 0.8083 0.828 0.7791 0.778 
0.7958 0.8106 0.8311 0.8066 0.7805 
0.7995 0.8139 0.8352 0.8093 0.7823 
0.8108 0.8339 0.8512 0.8217 0.8003 
0.8258 0.8492 0.8465 0.8347 0.8157 
0.8470 0.8693 0.8394 0.8396 0.8315 
0.8499 0.8718 0.841 0.8533 0.8356 
0.8535 0.8703 0.8421 0.8561 0.8437 
0.8546 0.8727 0.8412 0.8579 0.847 
0.8665 0.8931 0.8494 0.8511 0.8654 
0.8874 0.9011 0.8550 0.8713 0.8743 
0.8933 0.9024 0.8608 0.8882 0.8779 
0.8975 0.9056 0.8596 0.9091 0.8815 
0.9086 0.9133 0.8634 0.9135 0.8922 
0.9413 0.9731 0.8693 0.9398 0.9381 
0.9444 0.985 0.8778 0.9402 0.9557 
0.9475 0.9962 0.8815 0.9771 0.9604 
0.9622 0.9881 0.8842 0.9815 0.9725 
0.9934 1.0119 0.8907 1.0092 0.9805 
1.0136 1.0299 0.892 1.0299 1.0089 
1.0230 1.0357 0.8881 1.0318 1.0125 
1.0466 1.0362 0.8851 1.0326 1.0144 
1.0487 1.0364 0.885 1.0328 1.0161 
1.0497 1.0375 0.8754 1.0334 1.0163 

 
As in the third case, the effect of the number of hidden 

nodes used is being analyzed. The tests were carried out by 
varying the hidden nodes to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 
and 20 hidden nodes in each test respectively. To further 
improve the accuracy of BPANN and SPSO-ANN, 1000 
iteration had been use to test if the algorithm would do 
better than EHPSO-ANN whereas the number of iteration 
for EHPSO-ANN was maintained at 100 but no apparent 
improvement was found. It was found that in EHPSO-
ANN, the number of hidden nodes increased do improved 
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the accuracy of the prediction and the best accuracy 
occurred at 5 hidden nodes for both test systems used. 
After that, the accuracy started to oscillate up and down as 
the number of hidden nodes increases. Therefore, 5 hidden 
nodes with sum square error of 0.0041 in 14-bus system 
and 0.0107 in 30-bus system were chosen as a reference to 
carry out all the other analysis. But for BPANN and SPSO-
ANN, the accuracy of the prediction shows constant 
fluctuation and with higher SSE in most of the different 
numbers of hidden nodes used. Even with the best solution 

found by having the optimal number of hidden nodes, other 
algorithms failed to overpower the solution made by the 
proposed algorithm even in low number of hidden nodes 
and high iteration count. Table 7, Table 8 and Fig. 10 and 
Fig. 11 is provide a clearer view of the results in graphical 
form. 

 
 

5. Conclusion 
 
In conclusion, voltage stability of the transmission 

system is still a very important criterion if reliable and 
quality power supple is demanded. To avoid voltage 
collapse that can not only cause trouble to the people but 
also loss of money due to force halting of machines in 
factories that might suffer damages, accurate prediction of 
voltage stability condition is required. By employing PSO 
algorithms fast convergence and local minimum avoidance 
ability, the proposed EHPSO-ANN algorithm is able to 
achieve the objective fast and more than 4 times or 30 
percent more accurate than BPANN and 3 times more 
accurate than SPSO-ANN in the same iteration and 1000 
iterations count for BPANN respectively in 14-bus test 
system. The difference can also be seen when 30-bus test 
system was used shows the ability of the proposed 
algorithm is able to work well even in higher bus systems. 
Unmodified PSO-ANN could not produce feasible result in 
this paper shows the ability of EH-PSOANN in predicting 
the voltage stability of the power systems accurately. 
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