Acknowledgement
이 논문은 충북대학교 국립대학육성사업(2022)지원을 받아 작성되었음
References
- Agatonovic-Kustrin, S., and Beresford, R. (2000). "Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research." Journal of Pharmaceutical and Biomedical Analysis, Vol. 22, No. 5, pp. 717-727. https://doi.org/10.1016/S0731-7085(99)00272-1
- Amjady, N., and Keynia, F. (2011). "A new neural network approach to short term load forecasting of electrical power systems." Energies, Vol. 4, No. 3, pp. 488-503. https://doi.org/10.3390/en4030488
- Aqil, M., Kita, I., Yano, A., and Nishiyama, S. (2007). "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff." Journal of Hydrology, Vol. 337, No. 1-2, pp. 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013
- Babaei, M., Moeini, R., and Ehsanzadeh, E. (2019). "Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir)." Water Resources Management, Vol. 33, No. 6, pp. 2203-2218. https://doi.org/10.1007/s11269-019-02252-5
- Cho, Y.T., Lee, G.H., Hong, J.H., and Geem, G.W. (2022). "Prediction of photovoltaic generation using machine learning models with various weight optimization techniques." Journal of Korean Institute of Intelligent Systems, Vol. 32, No. 1, pp. 1-6. https://doi.org/10.5391/JKIIS.2022.32.1.1
- Choi, K. (2016). "Real-time artificial neural network for highdimensional medical image." The Korean Society of Radiology, Vol. 10, No. 8, pp. 637-643. https://doi.org/10.7742/jksr.2016.10.8.637
- Dorigo, M., Birattari, M., and Stutzle, T. (2006). "Ant colony optimization." IEEE Computational Intelligence Magazine, Vol. 1, No. 4, pp. 28-39. https://doi.org/10.1109/MCI.2006.329691
- Eom, J., and Jung, K. (2019). "Estimation of hourly dam inflow using time series data." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 2, pp. 163-168. https://doi.org/10.9798/kosham.2019.19.2.163
- Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). "A new heuristic optimization algorithm: harmony search." Simulation, Vol. 76, No. 2, pp. 60-68. https://doi.org/10.1177/003754970107600201
- Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2002). "Application of harmony search algorithm to water resources problems." Conference of the Environmental and Water Resources Institute of ASCE, ASCE, Roanoke, VA, U.S.
- Gocken, M., Ozcalici, M., Boru, A., and Dosdogru, A.T. (2016). "Integrating metaheuristics and artificial neural networks for improved stock price prediction." Expert Systems with Applications, Vol. 44, pp. 320-331. https://doi.org/10.1016/j.eswa.2015.09.029
- Goldberg, D.E., and Holland, J.H. (1988). "Genetic algorithms and machine learning." Machine Learning, Vol. 3, pp. 95-99. https://doi.org/10.1023/a:1022602019183
- Granata, F., Gargano, R., and De Marinis, G. (2016). "Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA's storm water management model." Water, Vol. 8, No. 3, 69.
- Han, H., Choi, C., Jung, J., and Kim, H.S. (2021). "Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow." Journal of Korea Water Resources Association, Vol. 54, No. 3, pp. 157-166. https://doi.org/10.3741/JKWRA.2021.54.3.157
- Jeon, G., Park, J., Jung, J., and Yoon, H. (2021). "Structural response estimation using gated recurrent unit." Korean Society of Hazard Mitigation, Vol. 21, pp. 171-179. https://doi.org/10.9798/KOSHAM.2021.21.3.171
- Joo, G., Park, C., and Im, H. (2020). "Performance evaluation of machine learning optimizers." Journal of IKEEE, Vol. 24, No. 3, pp. 766-776. https://doi.org/10.7471/IKEEE.2020.24.3.766
- Jung, S., Lee, D., and Lee, K. (2018). "Prediction of river water level using deep-learning open library." Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11. https://doi.org/10.9798/KOSHAM.2018.18.1.1
- Kennedy, J., and Eberhart, R. (1995). "Particle swarm optimization." Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, pp.1942-1948.
- Kim, D., Kim, Y., Jang, D., and Baek, C. (2019). "A study on the estimation of CSVR for flood damage analysis." Journal of the Korean Society Hazard Mitigation, Vol. 19, No. 6, pp. 303-311. https://doi.org/10.9798/kosham.2019.19.6.303
- Kim, L.S. (2004). "Firm bankruptcy prediction using artificial neural network models." The East-West Economics Association of Korea, No. 16, pp. 65-80.
- Lee, A., Geem, Z.W., and Suh, K.D. (2016a). "Determination of optimal initial weights of an artificial neural network by using the harmony search algorithm: application to breakwater armor stones." Applied Sciences, Vol. 6, No. 6, 164.
- Lee, E.H., Yoo, D.G., Choi, Y.H., and Kim, J.H. (2016b). "Development of the new meta-heuristic optimization algorithm inspired by a vision correction procedure: Vision correction algorithm," Journal of the Korea Academia-Industrial, Vol. 17, No. 3, pp. 117-126. https://doi.org/10.5762/KAIS.2016.17.3.117
- Lee, J., Sun, Y.G., Lee, S.M., Kim, S.H., Kim, Y., Lee, W., Sim, I., and Kim, J.Y. (2019). "Implementation of smart meter applying power consumption prediction based on GRU model." The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 19, No. 5, pp. 93-99. https://doi.org/10.7236/JIIBC.2019.19.5.93
- Lee, W.Y., Ko, K.E., Geem, Z.W., and Sim, K.B. (2017). "Method that determining the Hyperparameter of CNN using HS algorithm." Journal of the Korean Institute of Intelligent Systems, Vol. 27, No. 1, pp. 22-28. https://doi.org/10.5391/JKIIS.2017.27.1.022
- Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). "An improved harmony search algorithm for solving optimization problems." Applied Mathematics and Computation, Vol. 188, No. 2, pp. 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
- Mahsa, M., and Lee, T. (2018). "Comparison of optimization algorithms in deep learning-based neural networks for hydrological forecasting: Case study of Nam River daily runoff." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 6, pp. 377-384. https://doi.org/10.9798/kosham.2018.18.6.377
- McCulloch, W.S., and Pitts, W. (1943). "A logical calculus of the ideas immanent in nervous activity." The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, pp. 115-133. https://doi.org/10.1007/BF02478259
- Mok, J.Y., Choi, J.H., and Moon, Y.I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105. https://doi.org/10.3741/JKWRA.2020.53.2.97
- Moon, B.S., and Lee, K.J. (2011). "Prediction of the inflow in Seum-jin Dam according to rainfall." Journal of the Korea Entertainment Industry Association, Vol. 5, No. 2, pp. 104-111. https://doi.org/10.21184/jkeia.2011.06.5.2.104
- Park, C., and Chung, I.M. (2020). "Evaluating the groundwater prediction using LSTM model." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 273-283. https://doi.org/10.3741/JKWRA.2020.53.4.273
- Park, M.K., Yoon, Y.S., Lee, H.H., and Kim, J.H. (2018). "Application of recurrent neural network for inflow prediction into multi-purpose dam basin." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1217-1227. https://doi.org/10.3741/JKWRA.2018.51.12.1217
- Riad, S., Mania, J., Bouchaou, L., and Najjar, Y. (2004). "Predicting catchment flow in a semi-arid region via an artificial neural network technique." Hydrological Processes, Vol. 18, No. 13, pp. 2387-2393. https://doi.org/10.1002/hyp.1469
- Rosenblatt, F. (1958). "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological Review, Vol. 65, No. 6, 386.
- Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). "Learning representations by back-propagating errors." Nature, Vol. 323, No. 6088, pp. 533-536. https://doi.org/10.1038/323533a0
- Ryu, Y.M., and Lee, E.H. (2022). "Application of neural networks to predict Daecheong Dam water levels." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 1, pp. 67-78. https://doi.org/10.9798/KOSHAM.2022.22.1.67
- Sedki, A., Ouazar, D., and El Mazoudi, E. (2009). "Evolving neural network using real coded genetic algorithm for daily rainfall - runoff forecasting." Expert Systems with Applications, Vol. 36, No. 3, pp. 4523-4527. https://doi.org/10.1016/j.eswa.2008.05.024
- Seo, Y., Kim, S., Kisi, O., and Singh, V.P. (2015). "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques." Journal of Hydrology, Vol. 520, pp. 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050
- Valipour, M., Banihabib, M.E., and Behbahani, S.M.R. (2012). "Parameters estimate of autogressive moving average and autogressive integrated moving average models and compare their ability for inflow forecasting." Journal of Mathematics and Statistics, Vol. 8, No. 3, pp. 330-338. https://doi.org/10.3844/jmssp.2012.330.338
- Valipour, M., Banihabib, M.E., and Behbahani, S.M.R. (2013). "Comparison of the ARMA, ARIMA, and the autogressive artificial neural network models in forecasting the monthly inflow of Dez dam resorvoir." Journal of Hydrology, Vol. 479, pp. 433-441. https://doi.org/10.1016/j.jhydrol.2012.11.017
- Yoo, Y., Kim, D., and Lee, J. (2020). "Performance analysis of various activation functions in super resolution model." Proceedings of the Korea Information Processing Society Conference, Vol. 27, No. 1, pp. 504-507.
- Zhang, D., Lindholm, G., and Ratnaweera, H. (2018). "Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring." Journal of hydrology, Vol. 556, pp. 409-418. https://doi.org/10.1016/j.jhydrol.2017.11.018
- Zhou, Z., Li, Z., Snowling, S., Baetz, B.W., and Na, D. (2019). "A random forest model for inflow prediction at wastewater treatment plants." Stochastic Environmental Research and Risk Assessment, Vol. 33, No. 10, pp. 1781-1792. https://doi.org/10.1007/s00477-019-01732-9