• Title/Summary/Keyword: Gpx3

Search Result 238, Processing Time 0.03 seconds

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull;Jung, Nak-Kyun;Park, Chun Young;Oh, In-Jae;Choi, Yoo-Duk;Park, Jae-Il;Lee, Seung-won
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.631-638
    • /
    • 2016
  • Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.

Alterations of Glutathione Peroxidase Patterns by Stressor Treatment in Rice Seedling Roots (스트레스 물질에 의한 벼 glutathione peroxidase 활성패턴 변화)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • The effect of various stressors such as reductant ascorbic acid, signalling molecules (salicylic acid and methyl jasmonic acid), heavy metals $(NiCl_2,\;and\;MnSO_4)$ and NaCl on the glutathione peroxidase (GPX) activities and isoenzyme expression patterns were investigated in rice seedling roots. Total GPX activity increased according to the increase of ascorbic acid concentration. Prominent enhancement of GPX1 isozyme due to ascorbic acid contributed to the increase of total GPX activity. GPX showed different reactivity toward salicylic acid and methyl jasmonic acid. GPX activity increased at 0.1 mM salicylic acid, and then decreased thereafter. However, GPX increased gradually in a methyl jasmonic acid concentration-dependent manner, and 3 fold increase of GPX activity was found at 1 mM methyl jasmonic acid. Moreover, GPX1 isozyme increased according to the increase of salicylic acid, while GPX1 isozyme decreased according to the increase of methyl jasmonic acid. When metal ions were treated, GPX activity increased considerably according to the increase of $NiCl_2$ concentration, however, GPX activity increased about 2 fold at 0.5 mM $CuSO_4$ and then decreased. Enhancement of GPX1 isozyme contributed to the increase of total GPX activities in $NiCl_2-treated$ and $MnSO_4-treated$ rice seedlings. Total GPX activity increased 1.7 fold in response to 300 mM NaCl. Especially GPX2 isozyme showed gradual increase according to the increase of NaCl concentration.

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • Kho, Chang-Won;Lee, Phil-Young;Bae, Kwang-Hee;Kang, Sung-Hyun;Cho, Sa-Yeon;Lee, Do-Hee;Sun, Choong-Hyun;Yi, Gwan-Su;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.270-282
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

Molecular characterization of glutathione peroxidase gene from the liver of silver carp, bighead carp and grass carp

  • Li, Guang-Zhao;Liang, Xu-Fang;Yao, Wei;Liao, Wan-Qin;Zhu, Wei-Feng
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • The cDNAs encoding glutathione peroxidase (GPx) were cloned and sequenced from the liver of three Chinese carps with different tolerance to hepatotoxic microcystins, phyto-planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis), and herbivorous grass carp (Ctenopharyngodon idellus). Using genome walker method, a 750 bp 5'-flanking region of the silver carp GPx gene was obtained, and several potential regulatory elements were identified in the promoter region of the GPx gene. The silver carp GPx gene was widely expressed in all tissues examined. Despite phylogenetic analysis, assigning this newly described carp GPx to the group of mammalian GPx2, the carp GPx seems more similar to GPx1 from a physiological point of view. The constitutive expression pattern of the three carp liver GPx gene, shows a positive relationship with their tolerance to microcystins.

Effects of Calcium on Nitric oxide (NO)-induced Adventitious Rooting Process in Radish (Raphanus sativus L.) Cotyledons (무 (Raphanus sativus L.) 자엽에서 산화질소 (Nitric oxide)에 의해 유도된 부정근 형성과정에 대한 칼슘의 효과)

  • Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • The treatment of radish cotyledons with a nitric oxide (NO)-releasing substance, sodium nitroprusside (SNP) resulted in an increased adventitious root development in a dose-dependent manner. However, this NO-mediated enhancement effect was reversed when either 0.5 mM EGTA (an extracellular $Ca^{2+}$ chelator) or 0.1 mM $LaCl_3$ (a calcium channel blocker) was applied with $50\;{\mu}M$ SNP. Our results also showed that guaiacol peroxidase (GPX) and syringaldazine peroxidase (SPX) activities, which are known to play a key role in rooting, were more largely increased during adventitious root induction in the cotyledons treated with SNP. However, the treatment of cotyledons with SNP plus $LaCl_3$ inhibited the SNP-induced increases in the activities of both GPX and SPX. Trifluoperazine (TFP), an antagonist of calmodulin (a specific calcium-binding protein), also delayed adventitious root formation and significantly reduced the root length and number of the SNP-treated cotyledons as well as the deactivation of GPX and SPX enzymes. In conclusion, our results suggest that calcium is involved in the NO response leading to induction of adventitious root through a regulation of GPX and SPX.

Expression of selenium-independent glutathione peroxidase 5 (GPx5) in the epididymis of Small Tail Han sheep

  • Li, Ruilan;Fan, Xiaomei;Zhang, Tong;Song, Huizi;Bian, Xiaona;Nai, Rile;Li, Jinquan;Zhang, Jiaxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1591-1597
    • /
    • 2018
  • Objective: Selenium-independent glutathione peroxidase (GPx5) is specifically expressed in the mammalian epididymis and plays an important role in protecting sperm from reactive oxygen species and lipid peroxidation damage. This study investigates GPx5 expression in the epididymis of Small Tail Han sheep. Methods: GPx5 expression was studied in three age groups: lamb (2 to 3 months), young (8 to 10 months), and adult (18 to 24 months). The epididymis of each age group divided into caput, corpus and cauda, respectively. Analysis the expression quantity of GPx5 in epididymis and testis by real-time fluorescent quantitative polymerase chain reaction and Western blot. Finally, GPx5 protein locating in the epididymis by immunohistochemical. Results: The results demonstrate that in the lamb group, the GPx5 mRNA, but not protein, can be detected. GPx5 mRNA and expressed protein were detected in both the young and adult groups. Moreover, both the mRNA and protein levels of GPx5 were significantly higher in the young group than in other two groups. When the different segments of epididymis were investigated, GPx5 mRNA was expressed in each segment of epididymis regardless of age. Additionally, the mRNA level in the caput was significantly higher than that in corpus and cauda within same age group. The GPx5 protein was in the epithelial cells' cytoplasm. However, GPx5 mRNA and protein were not detected in the testis. Conclusion: These results suggest that GPx5 is mainly expressed in the epididymis of Small Tail Han sheep, and that the expression level of GPx5 is associated with age. Additionally, GPx5 was primarily expressed in the epithelial cells of the caput. Taken together, these studies indicate that GPx5 is expressed in the epididymis in all age grades.

Interactome Analysis of Yeast Glutathione Peroxidase 3

  • Lee, Phil-Young;Bae, Kwang-Hee;Kho, Chang-Won;Kang, Sung-Hyun;Lee, Do-Hee;Cho, Sa-Yeon;Kang, Seong-Man;Lee, Sang-Chul;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1364-1367
    • /
    • 2008
  • Oxidative stress damages all cellular constituents, and therefore, cell has to possess various defense mechanisms to cope. Saccharomyces cerevisiae, widely used as a model organism for studying cellular responses to oxidative stress, contains three glutathione peroxidase (Gpx) proteins. Among them, Gpx3 plays a major defense role against oxidative stress in S. cerevisiae. In this study, in order to identity the new interaction proteins of Gpx3, we carried out two-dimensional gel electrophoresis after immunoprecipitation (IP-2DE), and MALDI-TOF mass spectrometry. The results showed that several proteins including protein disulfide isomerase, glutaredoxin 2, and SSY protein 3 specifically interact with Gpx3. These findings led us to suggest the possibility that Gpx3, known as a redox sensor and ROS scavenger, has another functional role by interacting with several proteins with various cellular functions.

Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms

  • Yun-Juan Bao;Qi Zhou;Xuejing Yu;Xiaolan Yu;Francis J. Castellino
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2023
  • Glutathione peroxidases (Gpx) are a group of antioxidant enzymes that protect cells or tissues against damage from reactive oxygen species (ROS). The Gpx proteins identified in mammals exhibit high catalytic activity toward glutathione (GSH). In contrast, a variety of non-mammalian Gpx proteins from diverse organisms, including fungi, plants, insects, and rodent parasites, show specificity for thioredoxin (TRX) rather than GSH and are designated as TRX-dependent peroxiredoxins. However, the study of the properties of Gpx in the environmental microbiome or isolated bacteria is limited. In this study, we analyzed the Gpx sequences, identified the characteristics of sequences and structures, and found that the environmental microbiome Gpx proteins should be classified as TRX-dependent, Gpx-like peroxiredoxins. This classification is based on the following three items of evidence: i) the conservation of the peroxidatic Cys residue; ii) the existence and conservation of the resolving Cys residue that forms the disulfide bond with the peroxidatic cysteine; and iii) the absence of dimeric and tetrameric interface domains. The conservation/divergence pattern of all known bacterial Gpx-like proteins in public databases shows that they share common characteristics with that from the environmental microbiome and are also TRX-dependent. Moreover, phylogenetic analysis shows that the bacterial Gpx-like proteins exhibit a star-like radiating phylogenetic structure forming a highly diverse genetic pool of TRX-dependent, Gpx-like peroxidases.

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe

  • Kim, Ji-Sun;Bang, Mi-Ae;Lee, Song-Mi;Chae, Ho-Zoon;Kim, Kang-Hwa
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2010
  • Chaperone;Glutathione peroxidase;Peroxiredoxin;Schizosaccharomyces pombe;Thioredoxin peroxidase;To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43$^{\circ}C$, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.