Browse > Article

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae  

Kho, Chang-Won (Translational Research Center, KRIBB)
Lee, Phil-Young (Translational Research Center, KRIBB)
Bae, Kwang-Hee (Translational Research Center, KRIBB)
Kang, Sung-Hyun (Translational Research Center, KRIBB)
Cho, Sa-Yeon (College of Pharmacy, Chung-Ang University)
Lee, Do-Hee (Translational Research Center, KRIBB)
Sun, Choong-Hyun (School of Engineering, Information and Communications University)
Yi, Gwan-Su (School of Engineering, Information and Communications University)
Park, Byoung-Chul (Translational Research Center, KRIBB)
Park, Sung-Goo (Translational Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 270-282 More about this Journal
Abstract
The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.
Keywords
Gpx3; oxidative stress; proteomics; Saccharomyces cerevisiae; Yap1;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Brombacher, K., B. B. Fischer, K. Rufenacht, and R. I. Eggen. 2006. The role of Yap1p and Skn7p-mediated oxidative stress response in the defense of Saccharomyces cerevisiae against singlet oxygen. Yeast 23: 741-750   DOI   ScienceOn
2 Caesar, R., J. Warringer, and A. Blomberg. 2006. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Euk. Cell 5: 368-378   DOI   ScienceOn
3 Dormer, U. H., J. Westwater, D. W. Stephen, and D. J. Jamieson. 2002. Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene. Biochim. Biophys. Acta 1576: 23-29   DOI   ScienceOn
4 Fedoroff, N. 2006. Redox regulatory mechanisms in cellular stress responses. Ann. Bot. 98: 289-300   DOI   ScienceOn
5 Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605   DOI   ScienceOn
6 Hahn, J. S., D. W. Neef, and D. J. Thiele. 2006. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol. Microbiol. 60: 240-251   DOI   ScienceOn
7 Kho, C. W., P. Y. Lee, K. H. Bae, S. Y. Cho, Z. W. Lee, B. C. Park, S. M. Kang, D. H. Lee, and S. G. Park. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348: 25-35   DOI   ScienceOn
8 Myung, J. K. and G. Lubec. 2006. Use of solution-IEFfractionation leads to separation of 2673 mouse brain proteins including 255 hydrophobic structures. J. Proteome Res. 5: 1267-1275   DOI   ScienceOn
9 Park, S. G., C. W. Kho, S. Y. Cho, D. H. Lee, S. H. Kim, and B. C. Park. 2002. A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2: 206-211   DOI   ScienceOn
10 Stephen, D. W., S. L. Rivers, and D. J. Jamieson. 1995. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16: 415-423   DOI   ScienceOn
11 Stone, J. R. and S. Yang. 2006. Hydrogen peroxide: A signaling messenger. Antioxid. Redox Signal. 8: 243-270   DOI   ScienceOn
12 Vido, K., D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474   DOI   ScienceOn
13 Estruch, F. 2000. Stress-controlled transcription factors, stressinduced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24: 469-486   DOI   ScienceOn
14 Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808   DOI   ScienceOn
15 Weiss, A., J. Delproposto, and C. N. Giroux. 2004. Highthroughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae. Anal. Biochem. 327: 23-34   DOI   ScienceOn
16 Veal, E. A., S. J. Ross, P. Malakasi, E. Peacock, and B. A. Morgan. 2003. Ybp1 is required for the hydrogen peroxideinduced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278: 30896-30904   DOI   ScienceOn
17 Delaunay, A., D. Pflieger, M. B. Barrault, J. Vinh, and M. B. Toledano. 2002. A thiol peroxidase is an $H_{2}O_{2}$ receptor and redox-transducer in gene activation. Cell 111: 471-481   DOI   ScienceOn
18 Hasan, R., C. Leroy, A. D. Isnard, J. Labarre, E. Boy-Marcotte, and M. B. Toledano. 2002. The control of the yeast $H_{2}O_{2}$ response by the Msn2/4 transcription factors. Mol. Microbiol. 45: 233-241   DOI   ScienceOn
19 Grant, C. M., F. H. Maciver, and I. W. Dawes. 1996. Stationaryphase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 22: 739-746   DOI   ScienceOn
20 Sturtz, L. A., K. Diekert, L. T. Jensen, R. Lill, and V. C. Culotta. 2001. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276: 38084-38089
21 Kuge, S. and N. Jones. 1994. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13: 655-664
22 Nguyen, D. T., A. M. Alarco, and M. Raymond. 2001. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276: 1138-1145   DOI   ScienceOn
23 Ross, S. J., V. J. Findlay, P. Malakasi, and B. A. Morgan. 2000. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11: 2631-2642   DOI
24 Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucl. Acids Res. 21: 3329-3330   DOI   ScienceOn
25 Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J. B. Tagne, D. B. Reynolds, et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104   DOI   ScienceOn
26 Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246   DOI   ScienceOn
27 Demasi, A. P., G. A. Pereira, and L. E. Netto. 2006. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J. 273: 805-816   DOI   ScienceOn
28 Inoue, Y., T. Matsuda, K. Sugiyama, S. Izawa, and A. Kimura. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009   DOI
29 Basu, U., J. L. Southron, J. L. Stephens, and G. J. Taylor. 2004. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol. Genet. Genom. 271: 627-637   DOI   ScienceOn
30 Reverter-Branchat, G., E. Cabiscol, J. Tamarit, and J. Ros. 2004. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: Common targets and prevention by calorie restriction. J. Biol. Chem. 279: 31983-31989   DOI   ScienceOn
31 Godon, C., G. Lagniel, J. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B. Toledano, and J. Labarre. 1998. The $H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480-22489   DOI   ScienceOn
32 Menant, A., P. Baudouin-Cornu, C. Peyraud, M. Tyers, and D. Thomas. 2006. Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. J. Biol. Chem. 281: 11744-11754   DOI   ScienceOn
33 MacIsaac, K. D., T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and E. Fraenkel. 2006. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7: 113   DOI
34 Martindale, J. L. and N. J. Holbrook. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell Physiol. 192: 1-15   DOI   ScienceOn
35 Strain, J., C. R. Lorenz, J. Bode, S. Garland, G. A. Smolen, D. T. Ta, L. E. Vickery, and V. C. Culotta. 1998. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate ironsulfur cluster assembly. J. Biol. Chem. 273: 31138-31144   DOI   ScienceOn
36 Sies, H. and E. Cadenas. 1985. Oxidative stress: Damage to intact cells and organs. Philos. Trans R. Soc. Lond. B Biol. Sci. 311: 617-631   DOI
37 Tsuzi, D., K. Maeta, Y. Takatsume, S. Izawa, and Y. Inoue. 2004. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 565: 148-154   DOI
38 Carmel-Harel, O., R. Stearman, A. P. Gasch, D. Botstein, P. O. Brown, and G. Storz. 2001. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39: 595-605   DOI   ScienceOn
39 Pedrajas, J. R., P. Porras, E. Martinez-Galisteo, C. A. Padilla, A. Miranda-Vizuete, and J. A. Barcena. 2002. Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem. J. 364: 617-623   DOI   ScienceOn
40 Yoon, S. O., C. H. Yun, and A. S. Chung. 2002. Dose effect of oxidative stress on signal transduction in aging. Mech. Ageing Dev. 123: 1597-1604   DOI   ScienceOn