Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.3.170

Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe  

Kim, Ji-Sun (Departments of Food and Nutrition, Chonnam National University)
Bang, Mi-Ae (Departments of Food and Nutrition, Chonnam National University)
Lee, Song-Mi (School of Biological Sciences and Technology, Chonnam National University)
Chae, Ho-Zoon (School of Biological Sciences and Technology, Chonnam National University)
Kim, Kang-Hwa (Departments of Food and Nutrition, Chonnam National University)
Publication Information
BMB Reports / v.43, no.3, 2010 , pp. 170-175 More about this Journal
Abstract
Chaperone;Glutathione peroxidase;Peroxiredoxin;Schizosaccharomyces pombe;Thioredoxin peroxidase;To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43$^{\circ}C$, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.
Keywords
Chaperone; Glutathione peroxidase; Peroxiredoxin; Schizosaccharomyces pombe; Thioredoxin peroxidase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Lee, J., Spector, D., Godon, C., Labarre, J. and Toledano, M. B. (1999) A New Antioxidant with Alkyl Hydroperoxide Defense Properties in Yeast. J. Biol. Chem. 274, 4537-4544   DOI   ScienceOn
2 Park, S. G., Cha, M. K., Jeong, W. and Kim, I. H. (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723-5732   DOI   ScienceOn
3 Lee, S. Y., Song, J. Y., Kwon, E. S. and Roe, J. H. (2008) Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. Biochem. Biophys. Res. Commun. 367, 67-71   DOI   ScienceOn
4 Tanaka, T., Hijioka, H., Fujita, K., Usuki, Y., Taniguchi, M. and Hir asawa, E. (2004) Oxidative Stress-Dependent Inhibition of Yeast Cell Growth by Farnesylamine and Its Possible Relation to Amine Oxidase in the Mitochondrial Fraction. J. Biosci. Bioeng. 98, 470-476   DOI   PUBMED   ScienceOn
5 Yamashita, H., Avraham, S., Jiang, S., London, R., Van Veldhoven, P. P., Subramani, S., Rogers, R. A. and Avraham, H. (1999) Characterization of human and murine PMP20 peroxisomal proteins that exhibit antioxidant activity in vitro. J. Biol. Chem. 274, 29897-29904   DOI   PUBMED
6 Jara, M., Vivancos, A. P., Calvo, I. A., Moldon, A., Sanso, M. and Hidalgo, E. (2007) The Peroxiredoxin Tpx1 Is Essential as a $H_2O_2$ Scavenger during Aerobic Growth in Fission Yeast. Molecular Biology of the Cell 18, 2288-2295   DOI   ScienceOn
7 Kho, C. W., Lee, P. Y., Bae, K. H., Kang, S., Cho, S., Lee, do. H., Sun, C. H., Yi, G. S., Park, B. C. and Park, S. G. Kho. (2008) Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae. Microbiol. Biotechnol. 18, 270-282
8 Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., Lee, J. R., Lee, S. S., Moon, J. C., Yun, J. W., Choi, Y. O., Kim, W. Y., Kang, J. S., Cheong, G. W., Yun, D. J., Rhee, S. G., Cho, M. J. and Lee, S. Y. (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 117, 625-635   DOI   ScienceOn
9 Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Louisot, P. and Lunardi, J. (2002) Proteomics analysis of cellular response to oxidative stress; Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396-19401   DOI   ScienceOn
10 Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W. and Kim, K. (2005) Peroxiredoxin, a novel family of peroxidases. Gravit. Space. Biol. Bull. 18, 3-9
11 Lee, S., Kim, J. S., Yun, C. H., Chae, H. Z. and Kim, K. (2009). Aspartyl aminopeptidase of Schizosaccharomyce pombe has a molecular chaperone function. BMB Reports. 42, 812-816   DOI   PUBMED   ScienceOn
12 Chuang, M. H., Wu, M. S., Lo, W. L., Lin, J. T., Wong, C.H. and Chiou, S. H. (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. U.S.A. 103, 2552-2557   DOI   ScienceOn
13 Kang, G. Y., Park, E. H., Kim, K. and Lim, C. J. (2009) Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67   DOI   ScienceOn
14 Netto, L. E. S., Chae, H. Z., Kang, S. W., Rhee, S. G. and Stadtman ER. (1996) Removal of Hydrogen Peroxide by Thiol-specific Antioxidant Enzyme (TSA) Is Involved with Its Antioxidant Properties. J. Biol. Chem. 271, 15315-15321   DOI   PUBMED
15 Tanaka, T., Izawa, S. and Inoue, Y. (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280, 42078-42087   DOI   ScienceOn
16 Yang, K. S., Kang, S. W., Woo, H. A., Hwang, S. C., Chae, H. Z., Kim, K. and Rhee, S. G. (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036   DOI   ScienceOn
17 Kim, K., Kim, I. H., Lee, K. Y., Rhee, S. G. and Stadtman, E. R. (1988) The isolation and purification of a specific 'protector' protein which inhibits enzyme inactivation by a thiol/Fe(III)/$O_2$ mixed-function oxidation system. J. Biol. Chem. 263, 4704-4711   PUBMED
18 Flohe, L., Budde, H. and Hofmann, B. (2003) Peroxiredoxins in antioxidant defense and redox regulation. Biofactors. 19, 3-10   DOI   PUBMED
19 Jara, M., Vivancos, A. P., Calvo, I. A., Moldon, A., Sanso, M. and Hidalgo, E. (2007) The Peroxiredoxin Tpx1 Is Essential as a H2O2 Scavenger during Aerobic Growth in Fission Yeast. Molecular. Biology. of the Cell 18, 2288-2295   DOI   ScienceOn
20 Immenschuh, S. and Baumgart-Vogt, E. (2005) Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox. Signal. 7, 768-777   DOI   ScienceOn