Alterations of Glutathione Peroxidase Patterns by Stressor Treatment in Rice Seedling Roots

스트레스 물질에 의한 벼 glutathione peroxidase 활성패턴 변화

  • 김윤경 (순천향대학교 생명과학부) ;
  • 이미영 (순천향대학교 생명과학부)
  • Published : 2005.03.31

Abstract

The effect of various stressors such as reductant ascorbic acid, signalling molecules (salicylic acid and methyl jasmonic acid), heavy metals $(NiCl_2,\;and\;MnSO_4)$ and NaCl on the glutathione peroxidase (GPX) activities and isoenzyme expression patterns were investigated in rice seedling roots. Total GPX activity increased according to the increase of ascorbic acid concentration. Prominent enhancement of GPX1 isozyme due to ascorbic acid contributed to the increase of total GPX activity. GPX showed different reactivity toward salicylic acid and methyl jasmonic acid. GPX activity increased at 0.1 mM salicylic acid, and then decreased thereafter. However, GPX increased gradually in a methyl jasmonic acid concentration-dependent manner, and 3 fold increase of GPX activity was found at 1 mM methyl jasmonic acid. Moreover, GPX1 isozyme increased according to the increase of salicylic acid, while GPX1 isozyme decreased according to the increase of methyl jasmonic acid. When metal ions were treated, GPX activity increased considerably according to the increase of $NiCl_2$ concentration, however, GPX activity increased about 2 fold at 0.5 mM $CuSO_4$ and then decreased. Enhancement of GPX1 isozyme contributed to the increase of total GPX activities in $NiCl_2-treated$ and $MnSO_4-treated$ rice seedlings. Total GPX activity increased 1.7 fold in response to 300 mM NaCl. Especially GPX2 isozyme showed gradual increase according to the increase of NaCl concentration.

동진벼 유묘 뿌리에 환원제인 ascorbic acid, 신호전달물질인 salicylic acid와 methyl jasmonic acid, 중금속인 $NiCl_2$$CuSO_4$ 및 NaCl를 다양한 농도로 처리한 후 항산화효소인 glutathione peroxidase(GPX)의 활성과 동위효소의 패턴 변화를 살펴보았다. Ascorbic acid 처리에 의한 GPX의 총활성은 ascorbic acid 농도 증가에 의존적으로 증가하였으며 이러한 GPX활성 증가는 GPX1 동위효소의 현저한 활성증가에 기인하였다. GPX는 신호전달물질인 salicylic acid와 methyl jasmonic acid에 대하여 서로 다른 반응성을 보였다. GPX의 활성은 0.1 mM salicylic acid에 의해 증가하였다가 이후 감소하였다. 이에 비해 GPX는 methyl jasmonic acid의 농도증가에 의존하여 점진적으로 증가하여 1 mM methyl jasmonic acid에 의하여 약 3배의 활성증가를 보였다. 뿐만 아니라 GPX1 동위효소는 salicylic acid 농도가 증가할수록 활성이 감소한 반면 methyl jasmonic acid 농도가 증가할수록 현저하게 증가하였다. GPX의 총활성은 $NiCl_2$ 농도 증가에 따라 점진적으로 증가되었으나, $CuSO_4$ 처리군의 경우 GPX의 총비활성도는 0.5 mM $CuSO_4$에 의하여 약 2배 증가한 이후 점차 감소하였다. $NiCl_2$$CuSO_4$ 처리에 의한 GPX 활성증가도 주로 GPX1 동위효소의 활성증가에 기인하였다. NaCl 처리에 의한 GPX 총활성은 300 mM NaCl 처리군에서 약 1.7배 증가되었다가 이후 감소하였다. 특이하게도 NaCl 농도가 증가함에 따라 GPX2 동위효소 활성이 점차 증가하였다.

Keywords

References

  1. Clijsters, H., Cuypers, A. and Vangronsveld, J. (1999) Physiological responses to heavy metals in higher plants; defense against oxidative stress. Z. Naturforsch. 54, 730-734
  2. Sanita di Toppi, L. and Gabbrielli, R. (1999) Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105-130 https://doi.org/10.1016/S0098-8472(98)00058-6
  3. Salin, M. L. (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol. Plantarum 72, 681-689
  4. Rotruck, J. Y., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. (1973) Selenium Biochemical role as a component of glutathione peroxidase. Science 179, 588-590 https://doi.org/10.1126/science.179.4073.588
  5. Esworthy, R. S., Chu, E. F., Geiger, P., Girotti, A. W. and Doroshow, J. R. (1993) Reactivity of plasma glutathione peroxidase with hydroperoxide substrates and glutathione. Arch. Biochem. Biophys. 307, 29-34 https://doi.org/10.1006/abbi.1993.1555
  6. Yamamoto, Y. and Takahashi, K. (1993) Glutathione peroxidase isolated from plasma reduces phospholipid hydroperoxides. Arch. Biochem. Biophys. 305, 541-545 https://doi.org/10.1006/abbi.1993.1458
  7. Brigelius-Flohé, R., Aumann, K. D., Blöcker, H., Gross, G., Kiess, M., Klöppel, K. D., Rovert, A., Schuckelt, R., Ursini, F., Wingender, E. and Flohe, L. (1994) Phospholipid hydroperoxide glutathione peroxidase. J. Biol. Chem. 269, 7342-7348
  8. Kuroda, H., Sagisaka, S. and Chiba, K. (1992) Collapse of peroxide-scavenging systems in apple flower-buds associated with freezing injury. Plant Cell Physiol. 33, 743-750
  9. Navari-Izzo, F. and Izzo, R. (1994). Induction of enzyme activities and antioxidant production in barley plants as a result of $SO_{2}$ fumigation. Plant Sci. 96, 31-40 https://doi.org/10.1016/0168-9452(94)90219-4
  10. Dhindsa, R. S. (1994) Drought stress enzymes of glutathione metabolism, oxidation injury and protein synthesis in Tortula raralis. Plant Physiol. 95, 648-651 https://doi.org/10.1104/pp.95.2.648
  11. Price, N. M. and Harrison, P. J. (1988) Specific selenium containing macromolecules in the marine diatom Thalassiosira pseudonana. Plant Physiol. 86, 192-199 https://doi.org/10.1104/pp.86.1.192
  12. Tran, I. T., Inoue, Y. and Kimura, A. (1993) Oxidative stress response in yeast: Purification and some properties of a membrane-bound glutathione peroxidase from Hansenula mrakii, Biochem. Biophys. Acta 1164, 166-172
  13. Sabeh, F., Wright, T. and Norton, S. J. (1993) Purification and characterization of a glutathione peroxidase from the Aloe vera plant. Enzyme Prot. 47, 92-98
  14. Overbaugh, J. M. and Fall, R. (1985) Characterization of a selenium-independent glutathtione peroxidase from Euglena gracilis. Plant Physiol. 77, 437-442 https://doi.org/10.1104/pp.77.2.437
  15. Yokota, A., Shigeoka, S., Onishi, T. and Kitaoka, S. (1988) Selenium as inducer of glutathione peroxidase in$low-CO_{2}-grown$ Chlamydomonas reinhardtii. Plant Physiol. 86, 649-651 https://doi.org/10.1104/pp.86.3.649
  16. Bartling, D., Radzio, R., Steiner, U. and Weiler, E. W. (1993) A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 216, 579-586 https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
  17. Criqui, M. C., Jamer, F., Parmentier, Y., Marbach, J., Durr, A. and Fleck, J. (1992) Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol. Biol. 18, 623-627 https://doi.org/10.1007/BF00040684
  18. Holland, D., Ben-Hayyim, G., Paltin, Z., Camoin, L., Strosberg, A. D. and Eshdai, Y. (1993) Molecular characterization of saltstress associated protein in citrus: Protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol. Biol. 21, 923-927 https://doi.org/10.1007/BF00027124
  19. Johnson, R. R., Cruston, H. J. Chaverra, M. E. and Dyer, W. E. (1995) Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormant Avena fatua L. caryopses. Plant Mol. Biol. 28, 113-122 https://doi.org/10.1007/BF00042043
  20. Li, W. J., Feng, H., Fan, J. H., Zhang, R. Q., Zhao, N. M. and Liu, J. Y. (2000) Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochem. Biophy. Acta 1493, 225-230
  21. Kang, S. G., Jeong, H. K. and Suh, H. S. (2004) Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa. Mol. Cells 17, 23-28
  22. Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  23. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  24. Lin, C. H., Chen, H. J. and Hou, W. C. (2002) Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulafate polyacrylamide gels. Electrophoresis 23, 513-516 https://doi.org/10.1002/1522-2683(200202)23:4<513::AID-ELPS513>3.0.CO;2-J
  25. Foyer, C. H. and Lopez-Delgado, H., Dat, J. F. and Scott, I. M. (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plantarum 100, 241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  26. Doke, N., Miura, Y., Leandro, M. S. and Kawakita, K. (1994) Involvement of superoxide radical in signal transduction: responses to attack by pathogens, physical and chemical shocks and UV irradiation. In CH Foyer, PM Mullineaux, (eds.), Causes of Photo-oxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, FL, pp. 177-197
  27. Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) $H_{2}O_{2}$ from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593 https://doi.org/10.1016/0092-8674(94)90544-4
  28. Mehdy, M. C. (1994) Active oxygen species in plant defense against pathogens. Plant Physiol. 105, 467-472
  29. Eshdat Y., Holland D., Faltin, Z. and Ben-Hayyim G. (1997) Plant glutathione peroxidases. Physiol. Plantarum 100, 234-240 https://doi.org/10.1111/j.1399-3054.1997.tb04779.x
  30. Ederva, A., Salcheva, G. and Georgieva, D. (1993) Stress damage is related to peroxidase induction in wheat plant. Plant Peroxidase: Biochemistry and Physiology III International Symposium, pp. 401-404
  31. Borsani, O., Valpuesta, V. and Botella, M. A. (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedling. Plant Physiol. 126, 1024-1030 https://doi.org/10.1104/pp.126.3.1024
  32. Jin, E., Jang M., Ryoo, K. and Lee, M. Y. (2004) Isoperoxidases show differing sensitivity to salicylic acid. J. Environ. Biol. 25, 135-140
  33. Rodriguez Milla, M. A., Maurer, A., Huete, A. R. and Gustafson, J. P. (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36, 602-615 https://doi.org/10.1046/j.1365-313X.2003.01901.x
  34. Agrawal, G. K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. (2002) Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283, 227-236 https://doi.org/10.1016/S0378-1119(01)00854-X