• Title/Summary/Keyword: Gpx

Search Result 454, Processing Time 0.025 seconds

Alterations of Glutathione Peroxidase Patterns by Stressor Treatment in Rice Seedling Roots (스트레스 물질에 의한 벼 glutathione peroxidase 활성패턴 변화)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • The effect of various stressors such as reductant ascorbic acid, signalling molecules (salicylic acid and methyl jasmonic acid), heavy metals $(NiCl_2,\;and\;MnSO_4)$ and NaCl on the glutathione peroxidase (GPX) activities and isoenzyme expression patterns were investigated in rice seedling roots. Total GPX activity increased according to the increase of ascorbic acid concentration. Prominent enhancement of GPX1 isozyme due to ascorbic acid contributed to the increase of total GPX activity. GPX showed different reactivity toward salicylic acid and methyl jasmonic acid. GPX activity increased at 0.1 mM salicylic acid, and then decreased thereafter. However, GPX increased gradually in a methyl jasmonic acid concentration-dependent manner, and 3 fold increase of GPX activity was found at 1 mM methyl jasmonic acid. Moreover, GPX1 isozyme increased according to the increase of salicylic acid, while GPX1 isozyme decreased according to the increase of methyl jasmonic acid. When metal ions were treated, GPX activity increased considerably according to the increase of $NiCl_2$ concentration, however, GPX activity increased about 2 fold at 0.5 mM $CuSO_4$ and then decreased. Enhancement of GPX1 isozyme contributed to the increase of total GPX activities in $NiCl_2-treated$ and $MnSO_4-treated$ rice seedlings. Total GPX activity increased 1.7 fold in response to 300 mM NaCl. Especially GPX2 isozyme showed gradual increase according to the increase of NaCl concentration.

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull;Jung, Nak-Kyun;Park, Chun Young;Oh, In-Jae;Choi, Yoo-Duk;Park, Jae-Il;Lee, Seung-won
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.631-638
    • /
    • 2016
  • Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.

Expression Analysis of Glutathione Peroxidase Genes in the Stage-Specific Seminiferous Tubules of Mice Excised by a Laser Capture Microdissection (Laser Capture Microdissection으로 절제된 마우스의 특정 단계별 정세관에서 Glutathione Peroxidase 유전자의 발현 분석)

  • Yon, Jung-Min;Lin, Chun-Mei;Park, Jung-Hoon;Hong, Min-Ki;Jung, A-Young;Kim, Mi-Ra;Baek, In-Jeoung;Lee, Beom-Jun;Nam, Sang-Yoon;Yun, Young-Won
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The seminiferous epithelium, with its division into 12 spermatogenic stages in the mouse, is a very complex tissue. Glutathione peroxidase (GPx) is a representative antioxidant enzyme that is capable of reducing organic hydroperoxides to their corresponding hydroxyl compounds utilizing glutathione and is related to the mammalian spermatogenesis. In this study, a real-time PCR was performed in the stage-specific seminiferous tubules of mouse testes excised by a laser capture microdissection (LCM) in order to quantitate the expression levels of a series of GPx genes including cytosolic GPx (cGPx), gastrointestinal GPx (GI-GPx), plasma GPx (pGPx), and phospholipid hydroperoxide GPx (PHGPx). Frozen sections (10 ${\mu}m$) were obtained from normal adult mouse testes. LCM was used to capture all the cells that were grouped into stages I-V, VII-VIII, and IX-XI in cross-sections of seminiferous tubules. The expression level of PHGPx mRNA was remarkably higher than those of other GPx mRNAs in mouse testes. During spermatogenesis, the expressions of GI-GPx, pGPx, and PHGPx mRNAs were highest on stages VII-VIII, began to decrease after stage XI, and showed a lowest level on stage I-V. However, the expressions of cGPx mRNA were highest on stages VII-VIII, and showed a lowest level on stage XI-XI. These findings indicate that GPx genes are expressed differentially on mouse spermatogenesis and also LCM can be an useful tool in cellular quantitative analysis of testes.

Expression of selenium-independent glutathione peroxidase 5 (GPx5) in the epididymis of Small Tail Han sheep

  • Li, Ruilan;Fan, Xiaomei;Zhang, Tong;Song, Huizi;Bian, Xiaona;Nai, Rile;Li, Jinquan;Zhang, Jiaxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1591-1597
    • /
    • 2018
  • Objective: Selenium-independent glutathione peroxidase (GPx5) is specifically expressed in the mammalian epididymis and plays an important role in protecting sperm from reactive oxygen species and lipid peroxidation damage. This study investigates GPx5 expression in the epididymis of Small Tail Han sheep. Methods: GPx5 expression was studied in three age groups: lamb (2 to 3 months), young (8 to 10 months), and adult (18 to 24 months). The epididymis of each age group divided into caput, corpus and cauda, respectively. Analysis the expression quantity of GPx5 in epididymis and testis by real-time fluorescent quantitative polymerase chain reaction and Western blot. Finally, GPx5 protein locating in the epididymis by immunohistochemical. Results: The results demonstrate that in the lamb group, the GPx5 mRNA, but not protein, can be detected. GPx5 mRNA and expressed protein were detected in both the young and adult groups. Moreover, both the mRNA and protein levels of GPx5 were significantly higher in the young group than in other two groups. When the different segments of epididymis were investigated, GPx5 mRNA was expressed in each segment of epididymis regardless of age. Additionally, the mRNA level in the caput was significantly higher than that in corpus and cauda within same age group. The GPx5 protein was in the epithelial cells' cytoplasm. However, GPx5 mRNA and protein were not detected in the testis. Conclusion: These results suggest that GPx5 is mainly expressed in the epididymis of Small Tail Han sheep, and that the expression level of GPx5 is associated with age. Additionally, GPx5 was primarily expressed in the epithelial cells of the caput. Taken together, these studies indicate that GPx5 is expressed in the epididymis in all age grades.

Molecular characterization of glutathione peroxidase gene from the liver of silver carp, bighead carp and grass carp

  • Li, Guang-Zhao;Liang, Xu-Fang;Yao, Wei;Liao, Wan-Qin;Zhu, Wei-Feng
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • The cDNAs encoding glutathione peroxidase (GPx) were cloned and sequenced from the liver of three Chinese carps with different tolerance to hepatotoxic microcystins, phyto-planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis), and herbivorous grass carp (Ctenopharyngodon idellus). Using genome walker method, a 750 bp 5'-flanking region of the silver carp GPx gene was obtained, and several potential regulatory elements were identified in the promoter region of the GPx gene. The silver carp GPx gene was widely expressed in all tissues examined. Despite phylogenetic analysis, assigning this newly described carp GPx to the group of mammalian GPx2, the carp GPx seems more similar to GPx1 from a physiological point of view. The constitutive expression pattern of the three carp liver GPx gene, shows a positive relationship with their tolerance to microcystins.

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • Kho, Chang-Won;Lee, Phil-Young;Bae, Kwang-Hee;Kang, Sung-Hyun;Cho, Sa-Yeon;Lee, Do-Hee;Sun, Choong-Hyun;Yi, Gwan-Su;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.270-282
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms

  • Yun-Juan Bao;Qi Zhou;Xuejing Yu;Xiaolan Yu;Francis J. Castellino
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2023
  • Glutathione peroxidases (Gpx) are a group of antioxidant enzymes that protect cells or tissues against damage from reactive oxygen species (ROS). The Gpx proteins identified in mammals exhibit high catalytic activity toward glutathione (GSH). In contrast, a variety of non-mammalian Gpx proteins from diverse organisms, including fungi, plants, insects, and rodent parasites, show specificity for thioredoxin (TRX) rather than GSH and are designated as TRX-dependent peroxiredoxins. However, the study of the properties of Gpx in the environmental microbiome or isolated bacteria is limited. In this study, we analyzed the Gpx sequences, identified the characteristics of sequences and structures, and found that the environmental microbiome Gpx proteins should be classified as TRX-dependent, Gpx-like peroxiredoxins. This classification is based on the following three items of evidence: i) the conservation of the peroxidatic Cys residue; ii) the existence and conservation of the resolving Cys residue that forms the disulfide bond with the peroxidatic cysteine; and iii) the absence of dimeric and tetrameric interface domains. The conservation/divergence pattern of all known bacterial Gpx-like proteins in public databases shows that they share common characteristics with that from the environmental microbiome and are also TRX-dependent. Moreover, phylogenetic analysis shows that the bacterial Gpx-like proteins exhibit a star-like radiating phylogenetic structure forming a highly diverse genetic pool of TRX-dependent, Gpx-like peroxidases.

GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress

  • Kim, Hyeon Ju;Lee, Yoseob;Fang, Sungsoon;Kim, Won;Kim, Hyo Jung;Kim, Jae-woo
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.317-322
    • /
    • 2020
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH-fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)-treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.

Enhanced Expression of Plasma Glutathione Peroxidase in the Thymus of Mice Treated with TCDD and Its Implication for TCDD-induced Thymic Atrophy

  • Cho, Hyun-Jin;Hahn, Eun-Jin;Hwang, Ju-Ae;Hong, Min-Sun;Kim, Sook-Kyung;Pak, Hye-Ryun;Park, Joo-Hung
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.276-283
    • /
    • 2006
  • The potent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces thymus atrophy in experimental animals. However, its mechanism of action is not fully understood. To gain insight into its immunosuppressive effect, Balb/c mice were intraperitoneally injected with TCDD ($30{\mu}g/kg$ body weight) and genes regulated by TCDD were identified using cDNA arrays [Park and Lee (2002)]. One of the regulated genes was that for plasma glutathione peroxidase (pGPx). Upon TCDD injection, pGPx mRNA levels in the thymus increased, in parallel with increases in GPx activity and the frequency of anti-human pGPx antibody-reactive cells. pGPX mRNA levels were also moderately up-regulated in the testis and spleen. This is the first report that a particular isotype of the glutathione peroxidase family is regulated by TCDD at both mRNA and protein levels. pGPx is expressed in various tissues in contact with body fluids, and detoxifies hydrogen peroxides and lipid hydroperoxides. It will be of interest to assess the role of pGPx in TCDD-induced thymic atrophy.

Cardiopulmonary and Oxidative Stress Effects of Lung Lobectomy in Dogs; Comparison of Open and Thoracoscopic Surgery (개에서 폐엽절제가 심폐기능 및 산화 스트레스 상태에 미치는 영향; 일반개흉 및 흉강경을 통한 폐엽절제술 비교)

  • Lee, Jae Yeon;Kim, Myung Cheol
    • Journal of Veterinary Clinics
    • /
    • v.30 no.6
    • /
    • pp.409-414
    • /
    • 2013
  • In the present study, we investigated and compared the cardiopulmonary and oxidative stress effects of dogs undergoing open and thoracoscopic lung lobectomy. Ten healthy dogs, 5-8 years old, weighing 9-12 kg were used. The animals were randomly assigned to one of two groups according to the type of surgical procedure; open (group 1, n=5) or thoracoscopic lung lobectomy (group 2, n=5). Cardiopulmonary parameters, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) concentrations were measured. There were statistically significant changes in arterial blood gases values in both groups. Total anesthesia and surgical times were significantly shorter in thoracoscopic lobectomy group compared with open surgery group. Increases in plasma SOD and CAT levels, and decreases in GPx levels were observed in both groups after surgery. Significant difference in GPx levels was found when the groups were compared. The GPx level was significantly lower in the thoracoscopic lobectomy group compared with the open surgery group.