• Title/Summary/Keyword: Gold Electroplating

Search Result 20, Processing Time 0.022 seconds

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Residual Stress Measurement of Micro Gold Electroplated Structure

  • Baek, Chang-Wook;Kim, Yong-Kweon;Cho, Chul-Ho;Yoomin Ahn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.72-77
    • /
    • 2002
  • In this paper, a simple method to measure the residual stress in microstructure is presented. In order to find the residual stress in micro-machined beam, the first natural frequency of the beam that has the residual stress inside is analyzed using Rayleigh's energy method. Micro gold electroplated structure is fabricated by surface micro-machining process including electroplating. The made structure is an approximate shape of clamped-clamped beam and its 1 st natural frequency is measured by resonance method. For the better estimation of the residual stress, an equivalent length of micro-fabricated beam to ideal beam is calculated by FEM. The residual stress was estimated from the equivalent length and the measured natural frequency. It was found that a tensile stress was residue in the micro beam structure.

EFFECT OF THE SURFACE MODIFICATIONS AND THE USE OF WASHER ON THE REVERSE TORQUE OF THE IMPLANT PROSTHETIC GOLD RETAINING SCREW

  • Lee, Jae-Hyuck;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.246-261
    • /
    • 2002
  • The screw loosening is one of the complications that happen frequently in dental implant prostheses. The purpose of this study was to evaluate the changes of reverse/loosening (opening) torque of the screw according to the surface modifications by sandblasting and 24K gold electroplating as well as to determine the possibility of the clinical use of a washer in dental implant. The reverse torque of 4 experimental conditions(control, sandblasted, use of washers, electroplasted) was measured by digital torque gauge (Model MGT50Z, Mark-10 Corp., 458 West John Street Hicksville, NY 11801 USA). Electronic torque controller (Nobel Biocare DEA 020) was used in fastening the gold screws into abutment replicas. Mixed Linear Model Analysis method was used for statistical analysis. To examine the changes of screw thread surface, microphotographs were taken by Olympus PME-3 metallurgic microscope (Olympus Optical Co. Ltd., Tokyo, Japan). Within the limitations of this study, the following results were drawn: 1. The surface modifications of the gold screws and the use of a washer have significantly affected the reverse torque value compared to the control group (P<0.01). 2. Sandblasting and electroplating treatments demonstrated significantly higher reverse torque value than that of control group. 3. The use of a washer may be one of the useful clinical methods that prevent the screw loosening. However, further studies are necessary for the material selection and design of the washer.

Elastic Modulus Measurement of Micro Gold Electroplating Structure (마이크로 금 전해 도금 구조물의 탄성계수 측정)

  • Kim, Duck-Hyun;Ahn, Yoo-Min;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2530-2532
    • /
    • 1998
  • Micro gold electroplating structure is fabricated by surface micromachining process. The made structure is clamped-clamped beam and its 1st natural frequency is measured by resonance method. In order to find residual stress, first natural frequency of beam which has tensile stress inside is analysed using Rayleigh's method. Elastic modulus and residual stress are estimated from the measured natural frequency.

  • PDF

Fabrication and Evaluation of the Flexible and Implantable Micro Electrode (생체 삽입형 유연한 마이크로 전극의 제작 및 평가)

  • Baek Ju-Yeoul;Kwon Gu-Han;Lee Sang-Woon;Lee Ky-Am;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • In this paper, we fabricated and evaluated polydimethylsiloxane(PDMS)-based flexible and implantable micro electrodes. The electrode patterning was carried out with the photolithography and chemical etching process after e-beam evaporation of 100 ATi and 1000 A Au. The PDMS substrate was treated by oxygen plasma using reactive ion etching(RIE) system to improve the adhesiveness of PDMS and metal layers. The minimum line width of fabricated micro electrode was 20 $\mu$m. After finished patterning, we did packaging with PDMS and then brought up the electrode's part about 40 $\mu$m with gold electroplating. The Hank's balanced salt solution(HBSS) test was carried out for 6 month for endurance of fabricated micro electrode. We carried out in-vivo test for the evaluation of biocompatibility by implanting electrodes under the ICR mouse skin for 42 days.

Effect of addition of Tl+ and Pd2+ on the texture and hardness of the non-cyanide gold plating layer (논시안 금도금층의 조직과 경도에 미치는 Tl+ 과 Pd2+ 이온첨가의 영향)

  • Heo, Wonyoung;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.460-468
    • /
    • 2022
  • Due to its high electrical conductivity, low contact resistance, good weldability and high corrosion resi-stance, gold is widely used in electronic components such as connectors and printed circuit boards (PCB). Gold ion salts currently used in gold plating are largely cyan-based salts and non-cyanic salts. The cya-nide bath can be used for both high and low hardness, but the non-cyanide bath can be used for low hardness plating. Potassium gold cyanide (KAu(CN)2) as a cyanide type and sodium gold sulfite (Na3[Au(SO)3]2) salt as a non-cyanide type are most widely used. Although the cyan bath has excellent performance in plating, potassium gold cyanide (KAu(CN)2) used in the cyan bath is classified as a poison and a toxic substance and has strong toxicity, which tends to damage the positive photoresist film and make it difficult to form a straight side-wall. There is a need to supplement this. Therefore, it is intended to supplement this with an eco-friendly process using sodium sulfite sodium salt that does not contain cyan. Therefore, the main goal is to form a gold plating layer with a controllable hardness using a non-cyanide gold plating solution. In this study, the composition of a non-cyanide gold plating solution that maintains hardness even after annealing is generated through gold-palladium alloying by adding thallium, a crystal regulator among electrolysis factors affecting the structure and hardness, and changes in plating layer structure and crystallinity before and after annealing the correlation with the hardness.

Residual Stress Measurement of Micro Gold Electroplated Structure (마이크로 금 전해 도금 구조물의 잔류응력 측정)

  • Baek, Chang-Wook;Ahn, Yoo-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.195-200
    • /
    • 2000
  • In order to find a residual stress in the micro-machined beam, first natural frequency of the beam that has the residual stress inside is analyzed using the Rayleigh's energy method. Micro gold electroplated structure is fabricated by surface micro-machining process. The made structure is clamped-clamped beam and its 1st natural frequency is measured by resonance method. For the better estimation of the residual stress, an equivalent length of micro-machined beam to ideal beam is calculated by FEM. The residual stress is estimated from the equivalent length and the measured natural frequency.

  • PDF

Measurements of the Mechanical Properties of Electroplated Gold Microstructure (전해 도금된 마이크로 금 구조물의 기계적 특성 측정)

  • Baek, Chang-Wong;Kim, Yong-Kweon;Ahn, Yoo-Min
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.86-95
    • /
    • 2001
  • Mechanical properties of electroplated gold microstructures were determined from the micromachined beam structures. Cantilever and bridge beam structures of different length were fabricated by electroplating-surface micromachining technique, which is specially designed to realize an anchor structure close to an ideal fixed-boundary condition. Fabricated beams were electrostatically excited and their resonance frequencies were measured by optical system composed of laser displacement meter with dynamic signal analyzer. Young's modulus and mean residual stress were calculated from the measured frequencies of microbeams. In addtion, stress gradient was measured using deformation of released cantilever beam structure.

  • PDF

The Study on Development of Plating Technique on Electroless Ni/Au (무전해 니켈/금도금 기술 개발에 관한 연구)

  • Park Soo-Gil;Park Jong-Eun;Jung Seung-Jun;Yum Jae-Suk;Jun Sae-ho;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.138-143
    • /
    • 1999
  • Recently, miniaturization of large scale integrated circuits (LSI) and printed circuit board (PCB) have become essential with the downsizing of electronic devices. Gold electroplating is applied of conductivity wiring or terminals for improvement of conductivity and corrosion resistance. However, electroplating is not applicable since the circuits are becoming finer and denser. Accordingly, electroless plating is recently highly attractive method because of the simplicity of the operation requiring no external source of current and no elaborate equipment. In this work, we tried to develop a plating technique on electroless Ni/Au plating. First, the electroless Ni plating was deposited on the PCB with agitation in the bath at $85^{\circ}C$. Then the Au layer was deposited on the Ni layer surface by same method at $90^{\circ}C$. The bonderability were tested in order to evaluate the stability of the electroless Ni/Au by gold wire or solder ball test.

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil Measured at Low Frequency (금도금 방법으로 제작한 코일을 이용한 초소형 발전기의 저주파 진동 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Lee, Yoon-Pyo;Baek, Chang-Wook
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.10-14
    • /
    • 2006
  • We have designed and fabricated coil structures by gold electroplating technique. The thickness, width, and length are $7{\mu}m,\;20{\mu}m$, and 1.6m, respectively. With vibrating a magnet on the surface of a fabricated electroplated coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5Hz to 8Hz. The generated voltage was 106mV at 3Hz and 198mV at 6Hz. We have rectified and stepped up the input voltage using a quadrupler circuit. After using the step up circuit, the measured voltage was 81mV at 3Hz and 235mV at 6Hz.

  • PDF