• 제목/요약/키워드: Glycosylation

검색결과 334건 처리시간 0.024초

Facile and Rapid Glycosylation Monitoring of Therapeutic Antibodies Through Intact Protein Analysis

  • Oh, Myung Jin;Seo, Nari;Seo, JungA;Kim, Ga Hyeon;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • 제12권3호
    • /
    • pp.85-92
    • /
    • 2021
  • The therapeutic antibody drug market has experienced explosive growth as mAbs become the main therapeutic modality for a variety of diseases. Characterization of glycosylation that directly affects the efficacy and safety of therapeutic monoclonal antibodies (mAbs) is critical for therapeutics development, bioprocess system optimization, lot release, and comparability evaluation. The LC/MS approach has been widely used to structurally characterize mAbs, and recently attempts have been made to obtain comprehensive information on the primary structure and post-translational modifications (PTMs) of mAbs through intact protein analysis. In this study, we performed state-of-the-art LC/MS based intact protein analysis to readily identify and characterize glycoforms of various mAbs. Different glycoforms of mAbs produced in different expression cell lines including CHO, SP2/0 and HEK cells were monitored and compared. In addition, the comparability of protein molecular weight, glycoform pattern, and relative abundances of glycoforms between the commercialized trastuzumab biosimilar and the original product was determined in detail using the given platform. Intact mAb analysis allowed us to gain insight into the overall mAb structure, including the complexity and diversity of glycosylation. Furthermore, our analytical platform with high reproducibility is expected to be widely used for biopharmaceutical characterization required at all stages of drug development and manufacturing.

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis

  • Moon, Keumok;Lee, Seola;Park, Hyunsu;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권12호
    • /
    • pp.1692-1700
    • /
    • 2021
  • Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.

Development of Recombinant Human $Interferon-{\beta}-1a$ Analogs using Serum Free Suspension Culture of CHO Cell

  • Lee, Jong-Min;Oh, Han-Kyu;So, Moon-Kyoung;Yang, Ji-Hye;Yoon, Ho-Chul;Ahn, Ji-Soo;Kim, Ji-Tai;Yoo, Ji-Uk;Byun, Tae-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.35-35
    • /
    • 2005
  • Recombinant human $interferon-{\beta}-1a(rIFN-{\beta})$ is a single glycosylated protein (at N80, 1N) with anti-viral activity. However, present drugs have a relatively short serum half-life of $rIFN-{\beta}$, thus patients suffer from frequent $infections.^{1)}$ To improve its half-life, eight glycosylation analogs were prepared, which have additional N-linked glycosylation consensus sequences (N-X-T/S) within the $IFN-{\beta}$ molecule and/or at C-terminal. Each $rIFN-{\beta}$ analog was examined for the presence of additional N-linked glycosylation and the maintenance of anti-viral activity in CHO cells. The molecular weights of five analogs were not changed. However, two analogs, R27T within $rIFN-{\beta}$ (27 kDa, 2N) and GNITVNITV at C-terminal (29kDa, 2N), showed a clear increase in molecular weights, compared to native $rIFN-{\beta}$ (23 kDa, 1N). And another combined analog of R27T+GNITVNITV showed increased molecular weight (33 kDa, 3N). It was confimed that the molecular weight increment of analogs was caued by the N-linked glycosylation with the treatment of N-glycansae. In the case of anti-viral activity, the analog GNITVNITV showed a reduction in activity compared to native $IFN-{\beta}$, whereas the analogs R27T and R27T+GNITVNITV were found to have distinctly increased activities. Pharmacokinetic study in rats also disclosed that the analogs R27T and R27T+GNITVNITV had 2 3 fold increased serum half-life, respectively. In conclusion, the addition of N-linked glycosylation in $rIFN-{\beta}$ increased serum half-life, thereby its less frequent administration will be expected.

  • PDF

Glycoscience aids in biomarker discovery

  • Hua, Serenus;An, Hyun-Joo
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.323-330
    • /
    • 2012
  • The glycome consists of all glycans (or carbohydrates) within a biological system, and modulates a wide range of important biological activities, from protein folding to cellular communications. The mining of the glycome for disease markers represents a new paradigm for biomarker discovery; however, this effort is severely complicated by the vast complexity and structural diversity of glycans. This review summarizes recent developments in analytical technology and methodology as applied to the fields of glycomics and glycoproteomics. Mass spectrometric strategies for glycan compositional profiling are described, as are potential refinements which allow structure-specific profiling. Analytical methods that can discern protein glycosylation at a specific site of modification are also discussed in detail. Biomarker discovery applications are shown at each level of analysis, highlighting the key role that glycoscience can play in helping scientists understand disease biology.